Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)
\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)
Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)
Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)
\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)
Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)
=> (*) đúng
Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
Đẳng thức xảy ra <=> a=b=c=1
Chứng minh cái này đi: \(\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{2}{3}a+\frac{2}{3}\) ( gợi ý: bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\left(a+1\right)\ge0\))
Tương tự với 2 ẩn kia \(\Rightarrow\)\(\Sigma\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{8}{27}\Pi\left(a+1\right)\ge\frac{64}{27}\sqrt{abc}\ge\frac{64}{27}\)
dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)
Áp dụng BĐT thức Cô si cho 3 số , ta có:
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow ab+bc+ca+a+b+c+2\ge3+3+2=8\left(đpcm\right)\)
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
Mẫu bài này khó khử ~v
Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:
\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)
Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)
Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\)
\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)
\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)
Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)
(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)
Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)
Suy ra \(t^5+u^5+v^5\ge5-2=3\)
Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)
Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)
Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)
Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v
a,b,c dương thì cái này đúng chắc rồi :V