\(ab+bc+ac\ge9abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Áp dụng BĐT Cô-si: \(x+y\ge2\sqrt{xy}\)với \(x,y>0\), ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)(dấu '=' xảy ra \(\Leftrightarrow a=b\))

Tương tự, ta cũng có:

\(\frac{a}{c}+\frac{c}{a}\ge2\left('='\Leftrightarrow a=c\right);\frac{c}{b}+\frac{b}{c}\ge2\left('='\Leftrightarrow b=c\right)\)

Vì vậy 

\(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge6\)(dấu ''='' xảy ra khi \(a=b=c\))

\(\Leftrightarrow\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge6\)

\(\Leftrightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\Leftrightarrow\frac{ab+bc+ca}{abc}\ge9\Leftrightarrow ab+bc+ca\ge9abc\)

NV
22 tháng 5 2020

\(VT=\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+ac^2+ca^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ac^2}=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Dấu "=" xảy ra khi \(a=b=c\)

21 tháng 12 2018

\(\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{1+ac+c}\)

\(\frac{b}{bc+b+1}=\frac{abc}{acbc+acb+ac}=\frac{1}{c+1+ac}\)

\(\Leftrightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)

p/s: cộng lại chỉ = 1 thui >: có sai đề ko vại ?????????

21 tháng 12 2018

À nhầm đề nhé, cho mình xin lỗi, phải thế này mới đúng:

Cho abc = 1.

CMR: \(\frac{a}{ab+a+1}\)\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)= 3

13 tháng 6 2020

Bạn có thể làm cho mik bằng cách hệ số bất định được ko?Cảm ơn bạn rất nhiều

AH
Akai Haruma
Giáo viên
12 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM: $1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Từ đây, áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{a^2}{abc+a}+\frac{b^2}{abc+b}+\frac{c^2}{abc+c}\geq \frac{(a+b+c)^2}{3abc+a+b+c}=\frac{1}{3abc+1}\geq \frac{1}{3.\frac{1}{27}+1}=\frac{9}{10}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

6 tháng 2 2019

Áp dụng BĐT AM-GM ta có:

\(\hept{\begin{cases}\frac{bc}{a}+\frac{ac}{b}\ge2.\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2.c\\\frac{bc}{a}+\frac{ab}{c}\ge2.\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\\\frac{ac}{b}+\frac{ab}{c}\ge2.\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\end{cases}}\Leftrightarrow2.\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)( tự giải rõ ra nhé )

BĐT AM-GM: 

\(a+a_1+a_2+...+a_n\ge n\sqrt[n]{a.a_1.a_2.....a_n}\)

Dấu " = " xảy ra \(\Leftrightarrow a=a_1=a_2=...=a_n\)

6 tháng 2 2019

\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)

\(\Leftrightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}\ge a+b+c\)

\(\Leftrightarrow abc.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge a+b+c\)

Giải tiếp nhé

18 tháng 12 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+c}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+1+c}{ac+c+1}=1\) (đpcm)