Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v
\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)
tương tự 2 cái kia cộng lại t có bđt cần cm
\(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\)\(=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
Áp dụng bđt AM-GM cho 3 số thực dương a,b,c ta được:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(c+a\right)^2}{4\left(c+a\right)}\)
\(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a+b+c}{2}\left(1\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\left(đpcm\right)\)
\(\)
\(\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{a+b}{ab}}=\frac{ab}{a+b}\le\frac{\left(a+b\right)^2}{4.\left(a+b\right)}=\frac{a+b}{4}\)
Tương tự \(\frac{1}{\frac{1}{b}+\frac{1}{c}}\le\frac{b+c}{4};\frac{1}{\frac{1}{a}+\frac{1}{c}}\le\frac{c+a}{4}\)
\(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{a}+\frac{1}{c}}\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\left(đpcm\right)\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
\(\Leftrightarrow\frac{9}{4a^2+b^2+c^2}+\frac{9}{a^2+4b^2+c^2}+\frac{9}{a^2+b^2+4c^2}\le\frac{9}{2}\)
Thật vậy, ta có:
\(\frac{9}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Tương tự: \(\frac{9}{a^2+4b^2+c^2}\le\frac{a^2}{a^2+b^2}+\frac{b^2}{2b^2}+\frac{c^2}{b^2+c^2}\) ; \(\frac{9}{a^2+b^2+4c^2}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{2c^2}\)
Cộng vế với vế:
\(VT\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}=\frac{3}{2}+3=\frac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
BĐT cần chứng minh tương đương với :
\(\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ac}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\)( luôn đúng )
nguồn : loga
Bất đẳng thức cần chứng minh tương đương: \(\Sigma\frac{2}{a^2+b^2+2}\le\frac{3}{2}\)
\(\Leftrightarrow3-\Sigma\frac{2}{a^2+b^2+2}\ge\frac{3}{2}\Leftrightarrow\Sigma\left(1-\frac{2}{a^2+b^2+2}\right)\ge\frac{3}{2}\)
\(\Leftrightarrow\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)(*)
Xét vế trái của (*), ta có: \(\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)(Theo BĐT Bunyakovsky dạng phân thức)
Đến đây, ta cần chỉ ra rằng \(\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{2\left(a^2+b^2+c^2\right)+2\left(\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\right)}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a^2+b^2+c^2+\Sigma\text{}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)
\(\Leftrightarrow2\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\left(a^2+b^2+c^2\right)+9\)\(\Leftrightarrow\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(**)
Theo BĐT Cauchy-Schwarz cho 2 bộ số \(\left(a;b\right)\)và \(\left(c;b\right)\), ta có:\(\left(a^2+b^2\right)\left(c^2+b^2\right)\ge\left(ac+b^2\right)^2\) \(\Rightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)(1)
Tương tự, ta có: \(\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge ab+c^2\)(2); \(\sqrt{\left(c^2+a^2\right)\left(a^2+b^2\right)}\ge bc+a^2\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\text{}\text{}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)
\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(Do đó (**) đúng)
Đẳng thức xảy ra khi a = b = c = 1.
Bài này chính bạn đã hỏi 1 lần luôn:
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
Có đk j nữa chứ bạn ?
\(\frac{3}{2}\le\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Đặt: b + c = x
a + c = y
a + b = z
Ta có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: VP \(\ge\) \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{x}{2x}+\frac{x+z}{2y}-\frac{y}{2y}+\frac{x+y}{2z}-\frac{z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}+\frac{x+y}{2z}-\frac{1}{2}\)
VP \(\ge\) \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)-\frac{3}{2}\)
Ta có: \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\Leftrightarrow\)\(\frac{z^2}{x\text{z}}+\frac{x^2}{x\text{z}}\ge\frac{2xz}{x\text{z}}\)
\(\Leftrightarrow\)\(x^2-2xz+z^2\ge0\)
\(\Leftrightarrow\)\(\left(x-z\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow\) \(\frac{z}{x}+\frac{x}{z}\ge2\)
Tương tự: \(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)VP\(\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
VP\(\ge\frac{3}{2}\)
\(\Rightarrow\) \(\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)