\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

1 tháng 8 2017

Đầu tiên chứng minh:

\(a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)

Ta có:

\(3\left(a^3+b^3+c^3\right)=\left(a^3+a^3+b^3\right)+\left(b^3+b^3+c^3\right)+\left(c^3+c^3+a^3\right)\)

\(\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)

Quay lại bài toán ta có:

\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\)

\(=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

1 tháng 8 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)

\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)

\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)

Cần chứng minh \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Tiếp tục xài AM-GM \(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

TƯơng tự rồi cộng theo vế ta có ĐPCM

Xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

23 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)

\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)

\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

12 tháng 12 2016

ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)

\(\left(a+2b\right)^2\le3.3c^2=9c^2\)\(a+2b\le3c\)

lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

dấu = xảyra khi.... a+2b2=3c2(:v)

13 tháng 12 2016

cảm ơn bạn haha

14 tháng 6 2018

\(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}=\frac{1}{a^2+a^2+b^2}+\frac{1}{b^2+b^2+c^2}+\frac{1}{c^2+c^2+a^2}\)

\(< =\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{9}\left(\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{9}\left(\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)\)(bđt svacxo)

\(=\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)=\frac{1}{9}\cdot3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(=\frac{1}{9}\cdot3\cdot\frac{1}{3}=\frac{1}{9}\cdot1=\frac{1}{9}\)

\(\Rightarrow\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}< =\frac{1}{9}\)(đpcm)

dấu = xảy ra khi \(\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{1}{9}\Rightarrow a=b=c=3\)

3 tháng 5 2019

Ta có \(\frac{a}{a^2+2b+3}=\frac{a}{a^2+1+2\left(b+1\right)}\le\frac{a}{2a+2\left(b+1\right)}=\frac{a}{2\left(a+b+1\right)}\)

Chứng minh tương tự \(\hept{\begin{cases}\frac{b}{b^2+2c+3}\le\frac{b}{2\left(b+c+1\right)}\\\frac{c}{c^2+2a+3}\le\frac{c}{2\left(a+c+1\right)}\end{cases}}\)

Cộng 3 vế của 3 bđt lại ta được

\(VT\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Để bài toán được chứng minh thì ta cần \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)

\(\Leftrightarrow1-\frac{a}{a+b+1}+1-\frac{b}{b+c+1}+1-\frac{c}{c+a+1}\ge2\)

\(\Leftrightarrow A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\ge2\)

Ta có \(A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

              \(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

Áp dụng bđt quen thuộc \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)(quen thuộc) ta được

\(A\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)

     \(=\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)

      \(=\frac{2\left(a+b+c+3\right)^2}{2\left(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\right)}\)

     \(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+6}\)

     \(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}\)

      \(=\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}=2\)(DDpcm)

Dấu "=" xảy ra tại a= b = c =1

bn có thể ghi cho mk cái bđt đấy đc ko

#mã mã#