Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko co gia tri x,y,z thoa man
con cach lam co gi hoi mik minh tra loi cho
Từ \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Và \(ab+1\ge c\)
Do vậy \(2\left(ab+1\right)\ge a+b+c\Leftrightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Cm tương tự ta có : \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ca+1}\le\frac{2b}{a+b+c}\end{cases}}\)
Cộng vế với vế của 3 bđt trên :
\(\frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)
\(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)
\(\frac{1}{4}+\frac{8}{9}\le\frac{x}{36}\le1-\left(\frac{3}{8}-\frac{5}{6}\right)\)
<=> \(\frac{41}{36}\le\frac{x}{36}\le\frac{35}{24}\)
<=> \(\frac{82}{72}\le\frac{2x}{72}\le\frac{105}{72}\)
<=> \(82\le2x\le105\)
<=> \(41\le x\le52,5\)
Do \(x\in N\)nên \(x=\left\{x\in N|41\le x\le52,5\right\}\)