Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
Ta có :
a^2>hoặc=0(vì mang số mũ dương)
Tương tự => b^2 và c ^2 như a^2
mà a^2+b^2+c^2=1=>a=b=c=1
=> a^2016+b^2017+c^2018=1
Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)
\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)
Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)
\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)
Cứ tiếp tục thì sẽ ra nhá :))
Ta có:
\(\left(a+b-c\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)
Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)
\(\Rightarrow2ac+2bc-2ab< 2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\)
=3-( \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A
ta có bdt \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).
=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)
dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
mk ko chắc lắm, nghĩ sao viết vậy thôi