Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)
\(=\left(-1005\right)^2-2abc.0=1005^2\)
\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2010^2-1005^2=2.1005^2=2020050\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2ab-2bc-2ca=10\) (do a2+b2+c2=10)
\(\Leftrightarrow-2\left(ab+bc+ca\right)=10\Leftrightarrow ab+bc+ca=-5\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=25\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=25\) (do a+b+c=0)
Lại có: \(a^2+b^2+c^2=10\Leftrightarrow\left(a^2+b^2+c^2\right)^2=100\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\)
\(\Leftrightarrow a^4+b^4+c^4+2.25=100\Leftrightarrow a^4+b^4+c^4=50\)
+) Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )
+) Lại có : \(a^2+b^2+c^2=2016\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)
\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)
Hay : \(A=-4040082\)
Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)
\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)
\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)
Ta có : \(a^2+b^2+c^2=2016\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=2016^2\)
\(\Leftrightarrow a^4+b^4+c^4=2016^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có : \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2016+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=-2016\)
\(\Leftrightarrow ab+bc+ac=-1008\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\left(-1008\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=1008^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1008^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=1008^2\)
Nên : \(A=a^4+b^4+c^4=2016^2-2.1008^2=4064251,587\)
bằng 0 nha bn
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=1+2(ac+bc+ab)
=>ac+bc+ab=-1/2
=>(ac+bc+ab)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(ac+bc+ab)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>(-1/2)2=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1/4
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
12=a4+b4+c4+2.1/4
1=a4+b4+c4.1/2
a4+b4+c4=1-1/2=1/2