Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)
<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{cases}}\Rightarrow a=b=c\)
Thay vào ta tính được:
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)
Vậy B = 8
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
=> a + c = -b
=> b + c = -a
Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-\frac{abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)
Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 => B = -1
khi a + b + c \(\ne\)0 => B = 8
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)
\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
- TH2: a + b + c \(\ne\) 0
Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>\(\frac{a+b-c}{c}=1\)
a+b-c=c
2c=a+b
=>\(\frac{b+c-a}{a}=1\)
b+c-a=a
2a=b+c
=>\(\frac{c+a-b}{b}=1\)
c+a-b=b
=>c+a=2b
ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)
=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
Thế vào bài toán trở thành
Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)
Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Từ (1) ta có
\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)
\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
Ta lại có
\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
\(\Rightarrow M=\frac{2013}{2}\)