K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:

Từ điều kiện đề bài suy ra:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$

$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$

$\Rightarrow (a+b)(c+a)(c+b)=0$

$\Rightarrow (1-c)(1-b)(1-a)=0$

$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$

$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)

14 tháng 3 2018

Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)  ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)

\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)

25 tháng 6 2021

Ta có:\(a^2-b=b^2-c\)

\(\Leftrightarrow a^2-b^2=b-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)

\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)

\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)

\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)

Cmtt ta có:

\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)

Cre:mạng 

8 tháng 3 2015

vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)

=>(a+b+c)(bc+ac+ab) - abc = 0

=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0

=> a2(b+c) +  (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0 

=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0

Nếu b+c = 0 => a = 2008

nếu a+ b = 0 => c = 2008

Nếu a+c = 0 => b = 2008

Vậy....

19 tháng 3 2015

Trần Thị Loan : tại sao a+b+c = 2008  và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????

27 tháng 7 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2018}\Leftrightarrow2018\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0

Mà a + b + c = 2018

=> c = 2018 hoặc a = 2018  hoặc b = 2018 (đpcm)

30 tháng 8 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2018}\Leftrightarrow2018\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Mà \(a+b+c=2018\)

\(\Rightarrow a=2018\)hoặc \(b=2018\)hoặc \(c=2018\)

13 tháng 4 2018

Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1     <=> đ.p.c.m

21 tháng 4 2017

giai ho minh voi

11 tháng 8 2018

Ta có :  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)

\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )

\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)

\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Ta có : hoặc a+b =0

            hoặc b+c =0

           hoặc c+a = 0 

Mà  \(a+b+c=2017\)

\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017

Vậy ...