Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Tương tự: \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(dpcm\right)\)
Đề \(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+\left(abc+bc^2+ac^2-abc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\a+c=0\end{cases}\RightarrowĐpcm}\)
Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.