K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2015

vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)

=>(a+b+c)(bc+ac+ab) - abc = 0

=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0

=> a2(b+c) +  (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0 

=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0

Nếu b+c = 0 => a = 2008

nếu a+ b = 0 => c = 2008

Nếu a+c = 0 => b = 2008

Vậy....

19 tháng 3 2015

Trần Thị Loan : tại sao a+b+c = 2008  và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????

15 tháng 9 2019

\(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2008\)

\(\Rightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)

\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left[b\left(a+c\right)+a\left(a+c\right)\right]\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\)Hoặc a + b = 0 hoặc b + c = 0 hoặc a + c = 0 

Vậy 1 trong 3 số bằng 2008 (đpcm)

15 tháng 9 2019

Cảm ơn bạn đã giúp mình nhưng bạn bị nhầm 2 dòng đầu . Mình sửa lại cho bạn 2 dòng đầu như sau:

      \(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008}\) ;

    \(\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

20 tháng 3 2015

uk` , mình nhìn thấy rồi ♥

22 tháng 9 2019

Em tham khảo cách làm tương tự như link bên dưới nhé!

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:

Từ điều kiện đề bài suy ra:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$

$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$

$\Rightarrow (a+b)(c+a)(c+b)=0$

$\Rightarrow (1-c)(1-b)(1-a)=0$

$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$

$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)

23 tháng 4 2018

Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)

\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)

\(=a^{2008}+b^{2008}\)

Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)    ( * )

\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)

\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

thay vào (*) ta tính dc: 

a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)                   b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)

mặt khác a, b dương => a=1, b=1

Khi đó:   \(a^{2009}+b^{2009}=1+1=2\)

Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\) 

Cộng (1) với (2)  => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)

\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)

\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*) 

Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)

Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)

Vậy \(S=a^{2009}+b^{2009}=1+1=2\)

22 tháng 4 2018

\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{b}{bc+b+2008}+\dfrac{c}{ca+c+1}=1\)

=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{abc+ab+a2008}+\dfrac{abc}{abca+abc+ab1}=1\)

=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{2008+ab+2008a}+\dfrac{2008}{2008a+2008+ab}=1\)(do abc=2008_

=>\(\dfrac{2008a+2008+ab}{2008a+2008+ab}=1\)