\(\dfrac{7}{5}\)x2y3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

Ta thấy:

\(MNP=(-5xy)(11xy^2)(\frac{7}{5}x^2y^3)\)

\(=-77x^4y^6=-77(x^2y^3)^2\)

\((x^2y^3)^2\geq 0\Rightarrow MNP=-77(x^2y^3)^2\leq 0(*)\)

Nếu $M,N,P$ cùng giá trị dương thì $M.N.P$ mang dấu dương (trái với $(*)$)

Do đó 3 biểu thức này không thể cùng mang giá trị dương.

26 tháng 12 2016

Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi 

\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)

Thay n = 2 vào \(n+2\le2n\), ta có : 

\(2+2\le2\times2\)(t/mãn) 

Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B 

17 tháng 1 2017

Gớm nhỉ: bái phục

13 tháng 12 2017

viết đầu bài rõ ràng 1 chút chả hiểu gì cả

13 tháng 12 2017

chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ

1 tháng 4 2019

1. 

Xét hiệu:

\(x^3+y^3-\left(x^2y+xy^2\right)=\left(x^3-x^2y\right)-\left(xy^2+y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\), Với mọi x, y không âm

Vậy \(x^3+y^3\ge x^2y+xy^2\)với mọi x, y không âm

2. \(111\left(x-2\right)\ge1998\Leftrightarrow x-2\ge\frac{1998}{11}\Leftrightarrow x\ge\frac{1998}{11}+2=\frac{2020}{11}\)

3. Xét hiệu:

\(\frac{a-b}{b}-1=\frac{a}{b}-1-1=\frac{a}{b}-2>\frac{2b}{b}-2=2-2=0\)Với mọi , a, b dương

Vậy \(\frac{a-b}{b}>1\)với mọi a, b dương

1 tháng 4 2019

4) xét hiệu:

\(x^2+y^2+z^2+14-\left(4x+2y+6z\right)\ge0\)\

<=> \(x^2-4x+4+y^2-2y+1+z^2-6z+9=\left(x-2\right)^2+\left(y-1\right)^2+\left(z-3\right)^2\ge0\)luôn đúng vs mọi x, y, z

Vậy suy ra điều cần chứng minh

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

7 tháng 12 2017

Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .

A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3 2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y A= (3x-5) (2x+11) - (2x+3) (3x+7) B= (2x+3) (4x2-6x+9) - 2(4x3-1) C= (x-1)3 - (x+1)3+ 6(x+1)(x-1). 3. Tìm min của A, B, C và max của D, E A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6) D= 5 - 8x - x2 E= 4x - x2 +1 4. a. Cho a+b+c = 0. Chứng minh...
Đọc tiếp

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3

2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y

A= (3x-5) (2x+11) - (2x+3) (3x+7)

B= (2x+3) (4x2-6x+9) - 2(4x3-1)

C= (x-1)3 - (x+1)3+ 6(x+1)(x-1).

3. Tìm min của A, B, C và max của D, E

A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6)

D= 5 - 8x - x2 E= 4x - x2 +1

4. a. Cho a+b+c = 0. Chứng minh a3+b3+c3= 3abc

b. Tìm giá trị của a, b biết: a2 +2a + 6b + b2= -10

5. Tìm n∈Z để 2n2-n+2 ⋮ 2n+1

6. Tìm giá trị của biểu thức A= \(\dfrac{x+y}{z}+\dfrac{x+z}{y}\)nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

7. Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:

M=\(\dfrac{10x^2-7x-5}{2x-3}\)

8. Tìm giá trị nhỏ nhất của biểu thức: \(B=\dfrac{x^2-2x+2005}{x^2}\)

Mấy bạn giúp mình thi học kì với ạ! Cảm ơn trước nha!

3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)