\(A\left(1;2\right);B\left(-3;1\right);C\left(4;-2\right)\)

a) Chứng m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a) \(MA^2+MB^2=MC^2\)

\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)

\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)

\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)

Vậy tập hợp các điểm M là một đường tròn.

b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)

30 tháng 3 2017

Giải bài 2 trang 93 SGK hình học 10 | Giải toán lớp 10

30 tháng 3 2017

Giả sử M có tọa độ (x;y), ta có:

MA2= (x - 1)2 + (y + 2)2 ;

MA2= (x + 3)2 + (y - 1)2

MC2= (x - 4)2 + (y + 2)2

MA2 + MB2 = MC2 nên x2 + y2 + 12x - 10y - 5 = 0.

Vậy { M } là đường tròn tâm I (-6;5), bán kính R = \(\sqrt{66}\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Vậy ta được \(M\left(-1;1\right)\)

 Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:A. đường trung trực của đoạn ABB. đường tròn đường kính ABC. đường trung trực đoạn thẳng IAD. đường tròn tâm A, bán kính ABCâu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng...
Đọc tiếp

 

Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:

A. đường trung trực của đoạn AB

B. đường tròn đường kính AB

C. đường trung trực đoạn thẳng IA

D. đường tròn tâm A, bán kính AB

Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.

A. R = a/3

B. R = a/9

C. R = a/2

D. R = a/6

Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:

A. một đoạn thẳng

B. một đường thẳng

C. một đường tròn

D. một điểm

Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?

A.1

B.2

C.3

D. vô số

 

0
20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

30 tháng 3 2017

a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52

Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52

b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có : R = d(I; d) = \(=\)

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =

<=> 5x2 + 5y2 +10x – 20y +21 = 0

c) Tâm I là trung điểm của AB, có tọa độ :

x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)

AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)

=> (x -4 )2 + (y – 3)2 =13