K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(\overrightarrow{AB}=\left(-1;-4\right)\)

Ta có: ABCD là hình bình hành

nên \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{DC}=\left(-1;-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-3=-1\\y_D-3=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=2\\y_D=-1\end{matrix}\right.\)

7 tháng 11 2019

Đáp án B

5 tháng 12 2023

 a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.

 b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\) 

 Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)

\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)

\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)

\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)

c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.

\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)

\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)

\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

 d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

 e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.

Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)

\(\Rightarrow D\left(-2;-3\right)\) 

f) Bạn xem lại đề nhé.

30 tháng 9 2019

\(I\left(\frac{3-11}{2};\frac{2+0}{2}\right)\Rightarrow I\left(-4;1\right)\)

\(G\left(\frac{3+5-11}{3};\frac{2+4+0}{3}\right)\Rightarrow G\left(-1;2\right)\)

\(M\left(-22-5;0-4\right)\Rightarrow M\left(-27;-4\right)\)

\(D\left(3+5--11;2+4-0\right)\Rightarrow D\left(19;6\right)\)

\(\overrightarrow{AB}=\left(-3;7\right)\)

\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)

Để ABCD là hbh thì 

\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có:  \(\overrightarrow {AB}  = \left( {1;3} \right)\), \(\overrightarrow {DC}  = \left( {5 - x;5 - y} \right)\)

Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)

Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)

Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)

b) Gọi M  là giao điểm của hai đường chéo, suy ra M là trung điểm của AC

Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)

Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD  là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {1;3} \right),\overrightarrow {AC}  = \left( {3;3} \right),\overrightarrow {BC}  = \left( {2;0} \right)\)

Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \)

            \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}}  = 2\)

            \(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} =  - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

23 tháng 11 2024

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

đây nhé bạn

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4