Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Bạn viết pt 3 đường trung bình của tam giác ABC ra là được thôi
Vì A, B, C không nằm trên cùng một đường thằng, nên đường thẳng cách đều 3 điểm A. B, C là 3 đường trung bình của tam giác ABC
Gọi D, E, F lần lượt là trung điểm của AB, BC và CA, ta có: \(D\left(6;3\right)\); \(E\left(\frac{9}{2};5\right)\); \(F\left(-\frac{3}{2};3\right)\)
Gọi \(d_1,d_2,d_3\) là 3 đường thằng cần tìm. VTCP của \(\overrightarrow{u_{d_1}};\overrightarrow{u_{d_2}};\overrightarrow{u_{d_3}}\) lần lượt là \(\overrightarrow{BC};\overrightarrow{CA};\overrightarrow{AB}\)
\(d_1:\left\{{}\begin{matrix}QuaD\\VTCP\overrightarrow{u_1}\end{matrix}\right.\)
\(d_2:\left\{{}\begin{matrix}QuaE\\VTCP\overrightarrow{u_2}\end{matrix}\right.\)
\(d_3:\left\{{}\begin{matrix}QuaF\\VTPT\overrightarrow{u_3}\end{matrix}\right.\)
Viết các phương trình tham số, kết luận.
cho a,b,c là 3 điểm không thẳng hàng . gọi I là trung điểm BC . CMR vecto AB + vecto AC = 2 vecto AI
\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BI}+\overrightarrow{IA}+\overrightarrow{CI}+\overrightarrow{IA}=2\cdot\overrightarrow{IA}\)
Phương trình BC: 3x + 4y - 4 =0
=> d(A; BC) = \(\frac{\left|3.1+4.4-4\right|}{\sqrt{3^2+4^2}}\) = 3
=> Đáp án C
CMR 3 điểm A,B,C không thẳng hàng
mình nhầm
\(\overrightarrow{AB}=\left(2;8\right)\)
\(\overrightarrow{AC}=\left(-2;4\right)\)
Vì 2/-2<>8/4
nên A,B,C ko thẳng hàng