Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N K H E F I J T P
a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.
Nên tứ giác ACBD là hình vuông.
Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900
=> Tứ giác ACMH nội tiếp đường tròn
Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450
=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.
b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.
Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900
=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE
Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900
Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF
Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)
=> J là trung điểm của HM => Đpcm.
c) Trên tia đối của tia DB lấy T sao cho DT=CM.
Gọi P là hình chiếu của A xuống đoạn MN.
Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT
mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900
=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)
=> ^AMN=^ATN (2 góc tương ứng) hay ^AMP=^ATD
=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).
Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.
Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi
=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.
Vậy...
ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!
- Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
- Đang học tại: Trường THCS Lập Thạch
- Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
- Điểm hỏi đáp: 16SP, 0GP
- Điểm hỏi đáp tuần này: 1SP, 0GP
- Thống kê hỏi đáp
A B C D O E F Q P R K L M I H S
a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.
Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)
=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).
b) Gọi giao điểm của AC và BF là M.
Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM
=> \(\Delta\)AMF cân đỉnh M => AM=FM.
Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC
=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB
=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.
Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900
=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ
Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ
=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)
Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật
=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).
c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.
Theo chứng minh ở câu a): \(AB.AC=AD.AE\)
\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)
Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)
\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)
Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)
\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)
Nhân (1) với (2) theo vế, ta được:
\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)
Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE
=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:
\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)
Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)
Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)
\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)
Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).