Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(
A B C H D K E X Y Z O
Cách của em ạ :D
Hạ OX vuông góc BC,OY vuông góc AC,OZ vuông góc AB.
Áp dụng BĐT Cauchy Schwarz:
\(\frac{1}{HA}+\frac{1}{HB}+\frac{1}{HC}\ge\frac{9}{HA+HB+HC}\)
Mặt khác theo BĐT Erdos Mordell ta có:
\(OA+OB+OC\ge2\left(OX+OY+OZ\right)\)
Mà theo hệ quả của đường thẳng Euler thì HA=2OX;HB=2OY;HC=2OZ nên \(OA+OB+OC\ge HA+HB+HC\)
\(\Rightarrow HA+HB+HC\le3R\)
\(\Rightarrow\frac{1}{HA}+\frac{1}{HB}+\frac{1}{HC}\ge\frac{9}{3R}=\frac{3}{R}=const\)
Khi đó A là điểm chính giữa cung BC.
a) Ta có : AD2 = BD.DC
=> AD4 = BD2.CD2 (1)
Xét tam giác ABD có :
BD2 = BE.AB(2)
Xét tam giác AHC có :
CD2 = FC.AC(3)
Thay (2)(3) vào (1) có
AD4 = BE.AB.FC.AC= BE.FC.(AB.AC)
=> AD4 = BE.FC.BC.AD ( AB.AC = BC.AD)
Chia 2 vế cho AD có :
=> AD3 =BE.FC.BC