\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Do \(\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow b+c=2a\) (1)

\(\dfrac{b}{a+c}=\dfrac{1}{2}\Rightarrow a+c=2b\) (2)

\(\dfrac{c}{a+b}=\dfrac{1}{2}\Rightarrow a+b=2c\) (3)

Thay (1); (2) và (3) vào \(P\) ta có:

\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}\)

\(\Rightarrow P=2+2+2=6\)

Vậy \(P=6.\)

2 tháng 3 2017

+) Xét \(a+b+c=0\Rightarrow\left[\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Ta có: \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+b}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Vậy P = -3 hoặc P = 6

5 tháng 11 2018

Theo T/C dãy tỉ số bằng nhau 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)

Tương tự ta có 

\(b+c=2a\)

\(c+a=2b\)

Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

14 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Ta lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

24 tháng 8 2017

M=4 nha
Tick mình nhé!ok

22 tháng 9 2017

tks bn

2 tháng 3 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Do \(\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow b+c=2a\) (1)

\(\dfrac{b}{a+c}=\dfrac{1}{2}\Rightarrow a+c=2b\) (2)

\(\dfrac{c}{a+b}=\dfrac{1}{2}\Rightarrow a+b=2c\) (3)

Thay (1); (2) và (3) vào \(P\) ta có:

\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}\)

\(\Rightarrow P=2+2+2=6\)

Vậy \(P=6.\)

5 tháng 3 2017

mk còn cách khác

12 tháng 1 2018

b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\)\(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)\(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)\(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)\(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)

+) Vì a,b,c đôi một khác 0

\(\Rightarrow a+b+c=0\)

\(\rightarrow a+b=\left(-c\right)\)

\(\rightarrow a+c=\left(-b\right)\)

\(\rightarrow b+c=\left(-a\right)\)

+) Ta có:

\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)

\(=\left(-1\right)\)