K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

kết quả là-2002

22 tháng 3 2016

bạn giải rõ được không?

8 tháng 3 2017

\(B=\left|1-2x\right|+\left|y+7\right|=\left|2x-1\right|+\left|y+7\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  \(\forall a;b\) Ta có :

\(B=\left|2x-1\right|+\left|y+7\right|\ge\left|\left(2x-1\right)+\left(y+7\right)\right|=\left|\left(2x+y\right)+6\right|=\left|2010+6\right|=2016\)

Dấu "=" xảy ra <=> \(\left(1-2x\right)\left(y+7\right)\ge0\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\y\ge-7\end{cases}}\)

Vậy \(B_{min}=2016\) tại \(x\le\frac{1}{2};y\ge7\)

8 tháng 3 2017

trả lời sai rồi bạn ơi

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

8 tháng 4 2020

a) Thay x = -1 và y = 3 vào A, ta được :

A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3

A = -2.2 + 1 + 4

A = -4 + 5

A = 1

b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

*Thay x =-1 và y = 3 vào biểu thức :

Phần này bạn sẽ làm ý như câu a vậy :33

*Thay x = -1 và y =-3 vào A, ta được :

A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)

A = -2.(-4) + 1 + 7 + 3

A = 8 + 11

A = 19

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2