Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Thay x = -1 ( thỏa mãn ĐKXĐ ) vào biểu thức B , ta có :
\(B=\frac{2+1}{-1}=\frac{3}{-1}=-3\)
b) \(A=\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\)
\(A=\frac{1}{x-2}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}\)
\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{3x}{\left(x-2\right)\left(x+2\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
Mà P = 1/2
\(\Leftrightarrow\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{-\left(x-2\right)}{x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{x+2}.\frac{-1}{1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{-3}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow x+2=-6\Leftrightarrow x=-8\)( thỏa mãn )
d) P nguyên dương
\(\Leftrightarrow\frac{-3}{x+2}\)nguyên dương
<=> x + 2 thuộc Ư(3) { -1 ; -3 }
Bảng tìm x
x+2 | -1 | -3 |
x | -3(Nhận) | -5(loại) |
Vậy ....................
\(VT=\frac{1}{1+a^2}+\frac{1}{1+b^2}=\frac{1+b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\frac{1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\)\(=\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\)
Ta luôn có: \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2+b^2\ge2ab\) \(\Leftrightarrow\)\(a^2+b^2\ge2\) do \(ab\ge1\)
\(ab\ge1\) \(\Rightarrow\) \(a^2b^2\ge1\)
Khi đó: \(VT=\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\ge\frac{2+2}{1+2ab+1}=\frac{4}{2\left(1+ab\right)}=\frac{2}{1+ab}\)
\(\Rightarrow\)\(VT\ge\frac{2}{1+ab}\) hay \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) (đpcm)
Ta có: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)(đúng do \(ab\ge1\))
=> DPCM
a)Ta có : \(4x^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào B , ta được:
\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)
Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)
b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)
\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)
\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)
\(=\frac{x}{x+1}\)
Vậy \(M=\frac{x}{x+1}\)
c)Ta có: \(x< x+1\forall x\)
\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)
Vậy với mọi \(x\ne-1\)thì \(M< 1\)
Có: \(\frac{a^2}{1-a}=\frac{a^2-1+1}{1-a}=\frac{a^2-1}{1-a}+\frac{1}{1-a}=-\left(a+1\right)+\frac{1}{1-a}\)
Suy ra:
\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}+a+b-a-1-b-1\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\).
Áp dụng bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\).
Suy ra: \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\ge\frac{9}{2}-2=\frac{5}{2}.\)
Vậy ta có đpcm.
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)