\(2=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\)và \(x,y,z>0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Ta có x+ y3 - xy(x + y) = (x + y)(x - y)>= 0

<=> x3 + y >= xy(x + y)

<=> x+ y+ 1 >= xy(x+y+z)

<=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)

Tương tự

\(\frac{1}{x^3+z^3+1}\le\frac{1}{xz\left(x+y+z\right)}\)

\(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)}\)

Từ đó ta có VT \(\le\)\(\frac{1}{xy\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}\)

= 1 (qui đồng là ra nha)

Vậy GTLN là 1 đạt được khi x = y = z = 1

3 tháng 9 2016

3/2 mình nghĩ là thế

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

30 tháng 6 2020

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1

\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)

\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)

Vậy GTNN của P=3

20 tháng 8 2020

+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)

\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'

\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)

+) \(6=3\sqrt[3]{xyz}\le x+y+z\)

+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)

Dấu = xảy ra khi x = y = z = 2

29 tháng 5 2017

từ giả thiết ta suy ra \(\sqrt[3]{x^2y^2z^2}\ge3\)

lại có x2 + 2yz = x2 + yz + yz \(\ge\)3\(\sqrt[3]{x^2y^2z^2}\)\(\ge\)9

nên \(\frac{1}{x^2+2yz}\le\frac{1}{9}\)

tương tự với 2 số còn lại nên ta được P \(\le\frac{1}{3}\)

dấu "=" xảy ra khi x = y = z = \(\sqrt{3}\)

18 tháng 4 2019

\(H=\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)

\(\Leftrightarrow\)\(H=\frac{1}{\left(x+1\right)^2+\left(y+1\right)^2-2y}+\frac{1}{\left(y+1\right)^2+\left(z+1\right)^2-2z}+\frac{1}{\left(z+1\right)^2+\left(x+1\right)^2-2x}\)

Áp dụng BĐT AM-GM ta có:

\(H\le\frac{1}{2.\left(x+1\right)\left(y+1\right)-2y}+\frac{1}{2.\left(y+1\right)\left(z+1\right)-2z}+\frac{1}{2.\left(z+1\right)\left(x+1\right)-2x}\)

\(\Leftrightarrow H\le\frac{1}{2.\left(x+y+xy+1\right)-2y}+\frac{1}{2.\left(y+z+yz+1\right)-2z}+\frac{1}{2.\left(x+z+xz+1\right)-2x}\)

\(\Leftrightarrow H\le\frac{1}{2.\left(x+xy+1\right)}+\frac{1}{2.\left(y+yz+1\right)}+\frac{1}{2.\left(z+xz+1\right)}\)

\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{y+yz+1}+\frac{xyz}{xz\left(y+yz+1\right)}\right]\)

\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{yz}{1+y+yz}+\frac{1}{y+yz+1}+\frac{y}{y+yz+1}\right]=\frac{1}{2}.1=\frac{1}{2}\)

Dấu " = " xảy ra <=> \(x=y=z=1\)

Vậy \(H_{max}=\frac{1}{2}\Leftrightarrow x=y=z=1\)

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)