Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a² + b²/4 + 1/a² = 4
⇔ 8a⁴ + a²b² + 4 = 16a²
⇔ a²b² = -8a⁴ + 16a² - 4
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4
⇔ │ab│ ≤ 2
⇔ -2 ≤ ab ≤ 2
--> A = ab + 2011 ≥ 2009
Dấu " = " xảy ra ⇔
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2
Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)
\(\Rightarrow S=ab+2009\ge2007\)
Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2
* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1
\(Q=a+b+\frac{a^2+b^2}{a}+\frac{a^2+b^2}{b}=a+b+\frac{8}{a}+\frac{8}{b}\).
Ta dự đoán biểu thức đạt min tại \(a=b=2\) nghĩa là \(a=\frac{4}{a},b=\frac{4}{b}\) nên ta tách:
\(Q=\left(a+\frac{4}{a}\right)+\left(b+\frac{4}{b}\right)+4\left(\frac{1}{a}+\frac{1}{b}\right)\).
Áp dụng BĐT Cauchy và BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có \(Q\ge8+\frac{16}{a+b}\).
Ta lại có \(a+b\le\sqrt{2\left(a^2+b^2\right)}=4\) nên \(Q\ge12\)
quy đồng mẫu số ta được
\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0
<=> a=-b hoăc a =2b
với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)
với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)
TA có \(\frac{2}{b}=\frac{1}{a}+\frac{1}{b}\)
=>\(\frac{2}{b}-\frac{1}{b}=\frac{1}{a}\)
=>\(\frac{1}{b}=\frac{1}{a}\)
=>\(a=b\)thay vào P:
\(P=\frac{a+b}{2a-b}+\frac{c+d}{2c-b}\)
=>\(P=\frac{2a}{a}+\frac{2c}{c}\)
=>\(P=4\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ