Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)
\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)
Dấu "=" xảy ra khi \(a=b=1\)
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
\(N^2=\left(3a-2b\right)^2=\left(\dfrac{3}{\sqrt{2}}.\sqrt{2}a-\dfrac{2}{\sqrt{5}}.\sqrt{5}b\right)^2\le\left(\dfrac{9}{2}+\dfrac{4}{5}\right)\left(2a^2+5b^2\right)=\dfrac{583}{10}\)
\(\Rightarrow-\sqrt{\dfrac{583}{10}}\le N\le\sqrt{\dfrac{583}{10}}\)
\(N_{max}=\sqrt{\dfrac{583}{10}}\)
\(N_{min}=-\sqrt{\dfrac{583}{10}}\)