Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
$a^2+1\geq 2\sqrt{a^2}=2|a|\geq 2a$
$b^2+16\geq 2\sqrt{16b^2}=2|4b|\geq 8b$
$\Rightarrow a^2+b^2+17\geq 2(a+4b)=2.17$
$\Rightarrow a^2+b^2\geq 17$
Vậy $A_{\min}=17$ khi $a=1; b=4$
Với từng ấy điều kiện đề bài thì không tìm được max của $a^2+b^2$
bài này làm r` mà ko nhớ ở đâu, cx bận nên ngại làm lại ==
Bài 1)
Dạng tổng quát của BĐT Holder khá rắc rối. Người ta thường chú ý đến dạng phổ biến nhất là BĐT Holer bậc 3.
\((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)
Cách CM (AM-GM):
\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3axm}{\sqrt[3]{(a^3+b^3+c^3)(x^3+y^3+z^3)(m^3+n^3+p^3)}}\)
Tương tự với với các bộ còn lại và cộng lại thu được đpcm
Áp dụng BĐT Holder bậc ba:
\((a^3+b^3+16c^3)(1+1+\frac{1}{4})(1+1+\frac{1}{4})\geq (a+b+c)^3\)
\(\Leftrightarrow (a^3+b^3+16c^3).\frac{81}{16}\geq (a+b+c)^3\)
\(\Rightarrow P\geq \frac{16}{81}\)
Vậy \(P_{\min}=\frac{16}{81}\Leftrightarrow a=b=4c\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(4a-b\right)^2=\left(2\sqrt{2}.\sqrt{2}a-\frac{1}{2}.2b\right)^2\le\left(8+\frac{1}{4}\right)\left(2a^2+4b^2\right)=1089\)
\(\Rightarrow-33\le4a-b\le33\)
\(\Rightarrow-67\le M\le-1\)
\(M_{min}\) khi \(\left\{{}\begin{matrix}a=-8\\b=1\end{matrix}\right.\)
\(M_{max}\) khi \(\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\)