\(a=1;b=2^a;c=3^b;...;z=26^x\).

Tính giá trị của...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1), (2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1),(2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

mà x+y+z=3

=>\(x^2+y^2+z^2+3\ge2.3=6\)

<=> \(x^2+y^2+z^2\ge6-3=3\)

<=> \(A\ge3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1

b, Ta có: x+y+z=3

=> \(\left(x+y+z\right)^2=9\)

<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)

<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)

\(x^2+y^2+z^2\ge3\) (theo a)

=> \(9-2xy-2yz-2xz\ge3\)

<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)

<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)

<=> \(B\le3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1

b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)

c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)

\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

14 tháng 3 2018

a) A=(x+z)(y+t)

= xy+xt+zy+zt

Áp dụng bất đẳng thức cô si cho 2 số ta có

x2+y2 ≥ 2\(\sqrt{x^2y^2}\)

⇔x2+y2 ≥ 2xy

TT ta có

x2+t2 ≥ 2xt

y2+z2 ≥ 2yz

z2+t2 ≥ 2zt

cộng vế vs vế ta có

=> x2+y2+x2+t2+y2+z2+t2 ≥ 2xy+2xt+2yz+2zt

⇔ 2(x2+y2+z2+t2) ≥ 2(xy+xt+yz+zt)

⇔ 2 .1 ≥2 A

⇔ 1≥ A

⇔ A ≤ 1

=> Max A =1 dấu "=" xảy ra khi x=y=t=z= \(\pm\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Câu b)

Đây là bài toán quen thuộc của dạng toán xác định điểm rơi trong BĐT Cô-si:

Áp dụng BĐT Cô-si:

\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=\frac{4}{3}|xy|\geq \frac{4}{3}xy\)

\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2\sqrt{\frac{1}{3}x^2.\frac{4}{3}t^2}=\frac{4}{3}|xt|\geq \frac{4}{3}xt\)

\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2\sqrt{\frac{1}{3}y^2.\frac{4}{3}z^2}=\frac{4}{3}|yz|\geq \frac{4}{3}yz\)

\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2\sqrt{\frac{2}{3}z^2.\frac{2}{3}t^2}=\frac{4}{3}|zt|\geq \frac{4}{3}zt\)

Cộng theo vế các BĐT thu được và rút gọn:

\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)

\(\Leftrightarrow \frac{4}{3}(xy+xt+yz+zt)\leq 1\)

\(\Leftrightarrow B=(x+z)(y+t)\leq \frac{3}{4}\) hay $B_{\max}=\frac{3}{4}$

Dấu bằng xảy ra khi \(x=y=2z=2t\Leftrightarrow (x,y,z,t)=\left(\frac{1}{\pm \sqrt{3}}; \frac{1}{\pm\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}\right)\)

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2