Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.ĐK:\(x\ge0,x\ne9\)
\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}-3}\)
\(=\left[\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}-5}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}.\)
Để \(P< \dfrac{-1}{2}\Leftrightarrow\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}< \dfrac{-1}{2}\)
Bài 1:
ta có: C=\(\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x}{1-x}+\dfrac{5-5x+5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+\dfrac{5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+5\)
Vì 0<x<1==> \(\dfrac{x}{1-x}>0,\dfrac{5.\left(1-x\right)}{x}>0\)
Asp dụng BĐT coossi cho 2 số dg ta đc
\(\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}>=2.\sqrt{\dfrac{x}{1-x}.\dfrac{5.\left(1-x\right)}{x}}\)=2\(\sqrt{5}\)
==> C >= 2\(\sqrt{5}+5\)
Dấu ''='' xảy ra <=>\(\dfrac{x}{1-x}=\dfrac{5.\left(1-x\right)}{x}< =>x^{2^{ }}=5.\left(1-x\right)^2\)
<=> x=\(\dfrac{5-\sqrt{5}}{4}\)
Vậy..............
bài 2 :
ta có A= -x+2.\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)
= [ (x-3) + 2\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)+( 1-2x)] +2
= ( \(\sqrt{x-3}+\sqrt{1-2x}\))2+2
Nhận thấy( \(\sqrt{x-3}+\sqrt{1-2x}\))2>= 0
==> A >= 2
dấu ''='' xáy ra <=>( \(\sqrt{x-3}+\sqrt{1-2x}\))2=0
<=> \([^{x=3}_{x=\dfrac{1}{2}}\)
vậy..............
P = \(\dfrac{x-\sqrt{x}-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
P=\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
P=\(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}+2}\)
3P=\(\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}+2}\)
vì 2(\(\sqrt{x}+2\))>\(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)=>3p>1=>P>\(\dfrac{1}{3}\)
Áp dụng bất đẳng thức AM - GM, ta có:
\(S=\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\ge3\sqrt[3]{\dfrac{1}{\left(x-1\right)^2}\times\dfrac{1}{\left(2-x\right)^2}\times\dfrac{1}{\left(x-1\right)\left(2-x\right)}}\)
\(=\dfrac{3}{\left(x-1\right)\left(x-2\right)}=\dfrac{3}{-x^2+3x-2}\)
Vì \(-x^2+3x-2=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
nên \(S\ge\dfrac{3}{\dfrac{1}{4}}=12\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{\left(x-1\right)^2}=\dfrac{1}{\left(2-x\right)^2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\\x-\dfrac{3}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\left(\text{ nhận }\right)\)
Vậy \(Min_S=12\Leftrightarrow x=\dfrac{3}{2}\)
a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)
\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)
\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)
\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)
\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)
\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)
\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)
\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)
\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)
\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)=xy+100\\\left(x-2\right)\left(y-2\right)=xy-64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=94\\-2x-2y=-68\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=0\\-x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}xy-2x=xy-4x+2y-8\\2xy+7x-6y-21=2xy+6x-7y-21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=-8\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
a: ĐKXĐ: x>=0; \(x\notin\left\{4;9\right\}\)
b: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3}{\sqrt{x}+2}\)
Thay \(x=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{3}{\sqrt{2}-1+2}=\dfrac{3}{\sqrt{2}+1}=3\sqrt{2}-3\)
c: Để A<1 thì A-1<0
\(\Leftrightarrow\dfrac{3-\sqrt{x}-2}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow1-\sqrt{x}< 0\)
hay 0<x<1
\(P\ge\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+\dfrac{4}{\left(x-2+3-x\right)^2}=\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+4\)
\(P\ge\dfrac{1}{2}\left(\dfrac{4}{x-4+3-x}\right)^2+4=12\)
Dấu "=" xảy ra khi \(x-2=3-x\Rightarrow x=\dfrac{5}{2}\)