Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left|3a+5b\right|^2=9a^2+25b^2+30ab=9.1+25.1+30.3=124\)
\(\Rightarrow A=2\sqrt{31}\)
Bài này sử dụng bất đẳng thức tam giác
Đặt vectơ AB = a vectơ BC = b
Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) hay \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\overrightarrow{AC}\)
Ta lại có: \(AB+BC\ge AC\) ( bđt tam giác )
Từ 2 điều trên ta suy ra đpcm \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
\(u.v=0\Leftrightarrow\left(2a+3b\right)\left(-15a+14b\right)=0\)
\(\Leftrightarrow-30a^2+42b^2-17ab=0\)
\(\Leftrightarrow ab=\frac{-30.4^2+42.3^2}{17}=-6\)
\(\Rightarrow cos\left(a;b\right)=\frac{ab}{\left|a\right|\left|b\right|}=-\frac{6}{12}=-\frac{1}{2}\Rightarrow\left(a;b\right)=120^0\)
Câu 1:
Theo tính chất trọng tâm và đường trung tuyến, ta thấy \(\overrightarrow {AM}; \overrightarrow{GM}\) là 2 vecto cùng phương, cùng hướng và \(AM=3GM\)
\(\Rightarrow \overrightarrow{AM}=3\overrightarrow{GM}\)
\(=\frac{3}{2}(\overrightarrow{GM}+\overrightarrow{GM})\) \(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM})\)
\(=\frac{3}{2}[(\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{BM}+\overrightarrow{CM})]\)
\(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{GC})\) (vecto \(\overrightarrow{BM}; \overrightarrow{CM}\) là 2 vecto đối nhau nên tổng bằng vecto $0$)
Đáp án B
Câu 2:
\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)
\(=(\overrightarrow{AB}+\overrightarrow{BD})+(\overrightarrow{DC}+\overrightarrow{CA})=\overrightarrow{AD}+\overrightarrow{DA}\)
\(=\overrightarrow{0}\) (tổng của 2 vecto đối nhau)
Đáp án C
Câu 3:
Bạn nhớ rằng \(\overrightarrow{a}; k\overrightarrow{a}(k\in\mathbb{R})\) luôn là 2 vecto cùng phương (tính chất vecto). Nhưng nó mới chỉ là cùng phương thôi. Muốn cùng phương +cùng hướng thì \(k>0\) ; muốn cùng phương + ngược hướng thì \(k< 0\). Nói chung là phụ thuộc vào tính chất của $k$
Câu C thì hiển nhiên sai.
Nên đáp án B đúng
\(\left\{{}\begin{matrix}\overrightarrow{c}=\left(-m+5n;2m+n\right)\\\overrightarrow{v}=\left(9;4\right)\end{matrix}\right.\)
\(\overrightarrow{c}.\overrightarrow{v}=0\Leftrightarrow9\left(-m+5n\right)+4\left(2m+n\right)=0\)
\(\Leftrightarrow49n-m=0\Rightarrow m=49n\)
Mọi m;n thỏa mãn đẳng thức trên đều được