\(|a|-|b|\le|a+b|\le|a|+|b|\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 8 2021

Xét hình bình hành \(ABCD\).

\(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AD}\)

\(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|=AB-AD=AB-DC\)

\(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\)

\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=AB+AD=AB+CD\).

Xét tam giác \(ADC\)có:

\(AB-DC< AC< AB+DC\)(theo bất đẳng thức tam giác)

Do đó ta suy ra đpcm. 

17 tháng 7 2019

Bài này sử dụng bất đẳng thức tam giác

Đặt vectơ AB = a vectơ BC = b

Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) hay \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\overrightarrow{AC}\)

Ta lại có: \(AB+BC\ge AC\) ( bđt tam giác )

Từ 2 điều trên ta suy ra đpcm \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)

8 tháng 10 2020

Ta có \(a\left(1-a\right)\left(1-b\right)\ge0\)

\(\Leftrightarrow a^2b\ge a^2+ab-a\)

Tương tự \(b^2c\ge b^2+bc-b;c^2a\ge c^2+ca-a\)

\(\Rightarrow a^2b+b^2c+c^2a+1\ge a^2+b^2+c^2+ab+bc+ca-a-b-c+1\)\(=a^2+b^2+c^2+\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc\ge a^2+b^2+c^2\)

Hay \(a^2+b^2+c^2\le a^2b+b^2c+c^2a+1\)

27 tháng 4 2017

ta có: (a-b)2 \(\ge\) 0

=> a2 + b2 - 2ab \(\ge\) 0

=> a2 +b2 - ab \(\ge\) 0

=> a2 +b2 \(\ge\) ab

=> (a+ b)(a2 +b2 - ab) \(\le\) ab(a+b) (vì a\(\le0;\) b\(\le0\) nên a+b \(\le\)0)

=> a3 + b3 \(\le\) ab(a+b)

=>đpcm.

22 tháng 11 2019

dáng lẽ phải là \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) a2 +b2 - ab ab

15 tháng 10 2017

Sourse: Nâng cao & phát triển toán 9 ,phần BĐT. khá khó hiểu .

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

a)

\(A\cap B=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)

\(B\cap C=\left \{ x\in\mathbb{R}|4\leq x< 6 \right \}\)

\(A\cap C=\left \{ x\in\mathbb{R}|2\leq x\leq 5 \right \}\)

\(A\cup C=\left \{ x\in\mathbb{R}|1\leq x< 6 \right \}\)

\(A\setminus (B\cup C)=A\setminus \left \{ x\in\mathbb{R}|2\leq x\leq 7 \right \}=\left \{ x\in\mathbb{R}|1\leq x <2 \right \}\)

b)

Ta có: \(A\cap B\cap C=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)

Như vậy để \(D\subset A\cap B\cap C\) thì \(4\leq a,b\leq 5\)\(a\leq b\)

31 tháng 8 2017

bạn giải dùm mình 2 câu các tập hợp số nữa đi. cám ơn trc nha. mai mình nộp rồi. bạn tranh thủ dùm

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:

a)

Ta có:

\(ab-\frac{a^2+b^2}{2}=\frac{2ab-(a^2+b^2)}{2}=-\frac{a^2+b^2-2ab}{2}=-\frac{(a-b)^2}{2}\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow ab\leq \frac{a^2+b^2}{2}\) (đpcm)

b) Ta có:

\(ab-\left(\frac{a+b}{2}\right)^2=\frac{4ab-(a+b)^2}{4}=-\frac{a^2+b^2-2ab}{4}=-\frac{(a-b)^2}{4}\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow ab\leq \left(\frac{a+b}{2}\right)^2\) (đpcm)

c) Sửa đề: Lớn hơn hoặc bằng $(\geq)$ chứ không phải lớn hơn nha.

Ta có:

\((a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac\)

\(=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=\frac{(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)}{2}\)

\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0, \forall a,b,c\in\mathbb{R}\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\) (đpcm)

Dấu "=" của cả 3 phần xảy ra khi các biển bằng nhau.

17 tháng 12 2017

\(\dfrac{a+b}{2}và\sqrt{\dfrac{a^2+b^2}{2}}\)

biến đổi vế trái : \(\dfrac{a+b}{2}\Leftrightarrow\dfrac{\left(a+b\right)^2}{4}\)(1)

biến đổi vế phải : \(\sqrt{\dfrac{a^2+b^2}{2}}\Leftrightarrow\dfrac{\left(a+b\right)^2-2ab}{2}\)(2)

từ (1) và (2) \(\Rightarrow\)dpcm

17 tháng 12 2017

Chắc chưa học pp c/m bđt -.-