\(x,y\in N \)và \(x-y⋮7\).chứng minh 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

4x + 3y = 4x - 4y + 7y = 4(x - y) + 7y

Vì x - y \(⋮\) 7 => 4(x - y) \(⋮\) 7 và 7y \(⋮\) 7  => 4(x - y) + 7y \(⋮\) 7

Vậy 4x + 3y \(⋮\) 7

14 tháng 10 2020

\(a⋮7\);  \(b⋮7\)

\(a,b\in N\). a , b có thể là bất cứ một số nào miễn sao chia hết cho 7.

Với việc x , y \(\in\)N,ax\(⋮\)7 và by\(⋮\)7 thì tức là a và b được nhân lên nhiều lần và ĐK \(⋮\)7 không hề bị thay đổi.

\(\Rightarrow ax,by⋮7\)

7 tháng 11 2016

\(17x+17y⋮17\)\(\Leftrightarrow8x+12y+9x+5y⋮17\)\(\Rightarrow4\left(2x+3y\right)+9x+5y⋮17\)

Vì 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17

Vậy với mọi x, y\(\in N\) và 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17

7 tháng 11 2016

cho sửa đề lại là 2x+3y chia hết cho 17

29 tháng 6 2017

Đề hình như sai bn ạ

29 tháng 6 2017

ukm de minh coi lai

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

Bài 3: 

th1: n=2k

\(A=\left(n+3\right)\left(3n+2\right)=\left(2k+3\right)\left(6k+2\right)⋮2\)

th2: n=2k+1

\(A=\left(n+3\right)\left(3n+2\right)=\left(2k+4\right)\left(6k+5\right)⋮2\)

26 tháng 6 2017

Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)

\(\Leftrightarrow7x-21=5x+25\)

\(\Leftrightarrow7x-5x=21+25\)

\(\Leftrightarrow2x=46\)

\(\Rightarrow x=46:2=23\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)

\(\Leftrightarrow x^2-1=63\)

\(\Leftrightarrow x^2=64\)

\(\Rightarrow x^2=\left(\pm8\right)^2\)

\(\Rightarrow x=8\) hoặc \(x=-8\)

26 tháng 6 2017

2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)

\(7x-21=5x+25\)

\(7x-5x+25=21\)

\(2x+25=21\)

\(2x=-4\Rightarrow x=-2\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(7.9=\left(x+1\right)\left(x-1\right)\)

\(63=x\left(x-1\right)+1\left(x-1\right)\)

\(63=x^2-x+x-1\)

\(x^2=63+1=64\)

\(x=\left\{\pm8\right\}\)

c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)

\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)

\(x\left(x+4\right)+4\left(x+4\right)=40\)

\(x^2+4x+4x+16=40\)

\(x^2+8x=40-16=24\)

\(x\left(x+8\right)=24\)

\(x\in\left\{\varnothing\right\}\)

d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)

\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)

\(x^2-2x+2x-4=x^2+3x-x-3\)

\(\)\(x^2-4=x^2+2x-3\)

\(\Leftrightarrow x^2-x^2-2x+3=4\)

\(-2x+3=4\)

\(-2x=1\)

\(x=-\dfrac{1}{2}\)

15 tháng 8 2017

Cậu có chắc của lớp 6 không ???

Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\) 

Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)

24 tháng 4 2019

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si  \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)

22 tháng 2 2019

có ai giúp em gái lớp 4 câu này được hông