\(\frac{2x+1}{5}\)\(=\frac{3y-2}{7}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

x=2

y=3

x+y=5

5 tháng 2 2016

Theo dãy tỉ số bằng nhau, ta có : 

(2x+1) / 5=(3y-2 ) / 7 = [(2x+1)+(3y-2)] / ( 5 + 7) = (2x+1+3y-2) / 12 = (2x+3y-1) / 12 

= (2x+3y-1)/(6x) 

Thế thì 6 x = 12 

x = 2 

Lại có (2x+1) / 5=(3y-2 ) / 7 

Hay (2. 2 +1) / 5=(3y-2 ) / 7 

5 / 5 = (3y-2 ) / 7 

1 = =(3y-2 ) / 7 

3y-2 = 7 

3y = 9 

y = 3 

Vậy x = 2 ; y = 3

13 tháng 8 2016

Ta có: \(\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=12:6\Rightarrow x=2\)

13 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)\(=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Khi đó:\(\frac{2\times2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)

15 tháng 11 2015

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

=> x = 2

Thay x = 2 vào \(\frac{2x+1}{5}\), ta có:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)

=> 3y - 2 = 7

=> 3y = 9

=> y = 3

=> x + y = 2 + 3 = 5

KL: x + y = 5

4 tháng 1 2016

áp dụng tính chất của dãy tỉ số bằng nhau

=> 2x+1 /5=3y-2 /7=2x+1+3y-2 /5+7=2x+3y-1 /12

mà 2x+3y-1 /12=2x+3y-1 /6x

=> 6x=12=> x=2

thế x vào ta được : 2x+1/5=3y-2/7=4+1 /5=3y-2 /7=>3y-2=7=> y=3

vậy x+y=2+3=5

tick nha ^^

4 tháng 1 2016

tick cho tui lên 120 nha 

1 tháng 6 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2-\left(2x+3y-1\right)}{5+7-6x}\)

                                                                  \(=\frac{2x+1+3y-2-2x-3y+1}{12-6x}=\frac{0}{12-6x}=0\)

  \(\frac{2x+1}{5}=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\)

                                                     \(\Leftrightarrow x=-\frac{1}{2}\)

 \(\frac{3y-2}{7}=0\Leftrightarrow3y-2=0\Leftrightarrow3y=2\)

                                                    \(\Leftrightarrow y=\frac{2}{3}\)

          \(x+y=\frac{-1}{2}+\frac{2}{3}=\frac{1}{6}\)

Vậy \(x+y=\frac{1}{6}\)

25 tháng 12 2015

áp dụng tính chất dãy tỉ số bằng nhau là đc

1 tháng 11 2015

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

=> x = 2

Thay x = 2 ta có:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)

=> 3y - 2 = 7

=> 3y = 9

=> y = 3

=> x + y = 2 + 3 = 5