K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

Có: \(\left(2x+1\right)^2\ge0;\left|y-1,2\right|\ge0\) với mọi x;y

Mà theo đề bài: (2x + 1)2 + |y - 1,2| = 0

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left|y-1,2\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=-1\\y=1,2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{6}{5}\end{cases}}\)

Vậy ...

4 tháng 12 2016

Ta có: \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)

\(\Rightarrow\left(2x+1\right)^2=0\)\(\left|x-1,2\right|=0\)

+) \(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)

+) \(y-1,2=0\Rightarrow y=1,2\)

Vậy \(x=\frac{-1}{2};y=1,2\)

DD
24 tháng 8 2021

Bài 4. 

\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)

Bài 3. 

\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)

\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)

\(\Leftrightarrow12\left|x-1\right|=36\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)

1 tháng 5 2017

<=> x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0

<=> x2 + 2x2y2 + 2y2 - x2y2 - 2x- 2 = 0

<=> -x2 + x2y2 + 2y2 - 2 = 0

<=> x2 (y2 - 1) + 2 (y- 1) = 0

<=> (x+ 2)(y2 - 1) = 0

Vì x2 + 2 > 0 với mọi x => y- 1 = 0 <=> y = ± 1.

Vậy x \(\in\)R, y = ± 1.

_Kik nha!! ^ ^

9 tháng 5 2018

<=>x2+2x2+2y2-x2y2-2x2-2=0

<=>-x2+x2y2+2y2-2=0

<=>x2(y2-1)+2(y2-1)=0

<=>(x2+2)(y2-1)=0

Vì x2+2>0 với mọi x=>y2-1=0<=>y=1 hoặc (-1)

Vậy x thuộc R,Y = 1 hoặc (-1

1 tháng 4 2017

9/5 Nhớ cho mjnh nha

1 tháng 4 2017

ko đúng

20 tháng 11 2016

(2x - 3)2 + |y| = 1

\(\Rightarrow\left(2x-3\right)\le1\)

Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)

nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)

Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)

22 tháng 11 2016

2 cặp