\(\left(1+\frac{1}{x}\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

VT = 1 + \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{xy}\)

= 1 + \(\frac{y}{xy}\)\(\frac{x}{xy}\)\(\frac{1}{xy}\)

= 1 + \(\frac{x+y+1}{xy}\)

= 1 + \(\frac{1+1}{xy}\)

= 1 + \(\frac{2}{xy}\)

\(\frac{xy+1}{xy}\)= 1 +\(\frac{1}{xy}\)

>hoặc= 9

21 tháng 4 2017

Ta có:

\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)

\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)

\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)

Ta lại có:

\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)

\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)

Theo đề bài ta có: (sửa đề luôn)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

26 tháng 5 2019

kết bạn với mình nhé!

12 tháng 4 2019

Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)       (1)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)

\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)   (vì a + b = 1)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)  (2)

Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.

7 tháng 2 2020

1+1/a= 1+ (a+b)/a = 2+b/a

tương tự: 1+1/b= 2+a/b

nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)

áp dụng bđt cô si a/b+b/a >=2     =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)

28 tháng 8 2021

Áp dụng BĐT BSC và BĐT Cosi:

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)

\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)

\(=35\)

\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 8 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)

\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )

Dấu "=" xảy ra <=> x=y=z=1/3

8 tháng 2 2021

dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé

22 tháng 4 2017

Áp dụng BĐT AM-GM ta có: 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)

\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)

Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)