Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có:
\(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)
\(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)
=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)
Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)
<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)
ĐKXĐ \(x,y\ge0\)
Ta có \(x^3+y^3+xy-x^2-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x+y-1=0\)
\(\Leftrightarrow x+y=1\)
Mà x,y\(\ge0\)
\(\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}0\le\sqrt{x}\le1\\0\le\sqrt{y}\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}1\le1+\sqrt{x}\le2\\\frac{1}{2}\ge\frac{1}{2+\sqrt{y}}\ge\frac{1}{3}\end{cases}}\)
\(\Rightarrow1\ge P\ge\frac{1}{3}\)
Nhận thấy p\(=\frac{1}{3}\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=1\end{cases}}\)(thỏa mãn)
Nhận thấy P\(=1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge0\\y\le1\end{cases}}\\\hept{\begin{cases}x\le1\\y\ge0\end{cases}}\end{cases}}\)
2. ĐK: \(x\ge-5\)
\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)
\(\forall x\ge-5\) ta luôn có \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) x = 4 (nhận)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
Bình phương 2 cái đấy ta có
x6 - 6x4y2 + 9x2y4 = 100
y6 - 6x2y4 + 9x4y2 = 900
Cộng vế theo vế được
x6 + 3x2y4 + 3x4y2 + y6 = 1000
<=> (x2 + y2)3 = 1000
<=> x2 + y2 = 10