\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)CMR: 3x+4y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

Theo C-S:

\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)

\(\le\sqrt{\left(1-y^2+y^2\right)\left(1-x^2+x^2\right)}=1\)

Lại có \(3x+4y\le\sqrt{\left(x^2+y^2\right)\left(3^2+4^2\right)}\le\sqrt{5^2}=5\)

9 tháng 12 2016

Áp dụng BĐT Bunhiacopxki : 

\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)

Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)

\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

2 tháng 1 2017

Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có: 

 \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)

 \(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)

 \(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)

=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)

Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)

<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

4 tháng 12 2015

cái này chỉ cần nhân liên hợp là ra

4 tháng 12 2015

Nhân biểu thức Liên hợp Quân ơi