\(\ge\)2

tìm GTNN của M= \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

*Áp dụng Cosi với x,y>0 ta có:

\(x+y\ge2\sqrt{xy}\left(1\right)\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)

Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)

**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)

Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)


6 tháng 4 2020

Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)

Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)

\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)

Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)

\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)

Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)

Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)

Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)

Với x=y=1/2

25 tháng 5 2019

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )

Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)

đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)

ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

25 tháng 5 2019

Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Áp dụng ta được

\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)

Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))

Khi đó

\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1

Lưu ý 

Nhiều người sẽ nhầm \(VT\ge2\)

Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra 

NV
17 tháng 5 2020

a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)

b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)

\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)

\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)

\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)

\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)

\(\Rightarrow\left(x;y\right)=...\)

\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn

17 tháng 5 2020

tks nha

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

1 tháng 4 2020

Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :

Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath

Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!

1 tháng 4 2020

B1:

\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=2+\frac{x}{y}+\frac{y}{x}\)

Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

Thật vậy !!!

\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)

\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)

\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)

\(\Leftrightarrow2x^2-5xy+2y^2\le0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )

Dấu "=" xảy ra tại \(x=1;y=2\)

Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

26 tháng 7 2019

vừa lên lớp 8 đã bị hack não rồi k bt có học đc k đây

17 tháng 6 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz--xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

CMTT:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A=\(\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

\(A=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

\(xy+yz+xz=0\)

Từ \(\Rightarrow\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy A=0