Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\y+1=b>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)-2\left(b-1\right)\ge1\)
\(\Rightarrow a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{\left(x+1\right)^2+\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=\dfrac{a^2+b^2}{ab}=\dfrac{a}{b}+\dfrac{b}{a}\)
\(A=\left(\dfrac{a}{4b}+\dfrac{b}{a}\right)+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\) hay \(x+1=2\left(y+1\right)\)
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
\(=\frac{1}{x\left(\frac{1}{y^2}+\frac{1}{z^2}\right)}+\frac{1}{y\left(\frac{1}{z^2}+\frac{1}{x^2}\right)}+\frac{1}{z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì \(a^2+b^2+c^2=1\) Ta cần chứng minh:
\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Theo đánh giá bởi AM - GM ta có:
\(a^2\left(1-a^2\right)^2=\frac{1}{2}\cdot2a^2\cdot\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)^2\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{a^2}{a\left(1-a\right)^2}\ge\frac{3\sqrt{3}}{2}a^2\)
Tương tự rồi cộng lại ta có ngay điều phải chứng minh
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Ta có \(a,b,c>0;a^2+b^2+c^2=1\)
và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có
\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)
Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)
\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)
từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\y+1=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a-1\\y=b-1\end{matrix}\right.\)
Thế vào điều kiện bài toán: \(a-1-2\left(b-1\right)\ge1\Rightarrow a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{\left(x+1\right)^2+\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=\dfrac{a^2+b^2}{ab}=\dfrac{a}{b}+\dfrac{b}{a}\)
\(A=\left(\dfrac{a}{4b}+\dfrac{b}{a}\right)+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\) hay \(x=2y+1\)