\(\left(a+b\right)\times\left(1+ab\right)\ge4ab\)

G...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

áp dụng BĐT côsi cho hai số thực ko âm ta có

\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\1+ab\ge2\sqrt{ab}\end{cases}}\Rightarrow\left(1+b\right)\left(1+ab\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\left(đpcm\right)\)

đẳng thức xảy ra \(\Leftrightarrow a=b=1\)

1 tháng 6 2018

a) a2(a-b)-b2(a-c)-c2(b-a)

=a2(a-b)-b2(a-c)+c2(a-b)

=(a-b)(a2-c2)-b2(a-c)

=(a-b)(a-c)(a+c)-b2(a-c)

=(a-c)[(a-b)(a+c)-b2]

b)a(b-c)3+b(c-a)3+c(a-b)3

=a(b-c)3-b[(a-b)+(b-c)]+c(a-b)3

=a(b-c)3-b[(a-b)3+3(a-b)2(b-c)+3(a-b)(b-c)2+(b-c)3]+c(a-b)3

=a(b-c)3-b(a-b)3+3b(a-b)2(b-c)+3b(a-b)(b-c)2+b(b-c)3+c(a-b)3

=(b-c)3(a-b)-(a-b)3(b-c)-3b(a-b)(b-c)(a-b+b-c)

=(b-c)3(a-b)-(a-b)3(b-c)-3b(a-b)(b-c)(a-c)

=(a-b)(b-c)[(b-c)2-(a-b)2-3b(a-c)]

=(a-b)(b-c)[(b-c-a+b)(b-c+a-b)-3b(a-c)]

=(a-b)(b-c)[(2b-a-c)(a-c)-3b(a-c)]

=(a-b)(b-c)(a-c)(2b-a-c-3b)

=-(a-b)(b-c)(a-c)(a+b+c)

=(a-b)(b-c)(c-a)(a+b+c)

c)abc-(ab+ac+bc)+(a+b+c)-1

=abc-ab-ac-bc+a+b+c-1

=abc-bc-ab+b-ac+c+a-1

=bc(a-1)-b(a-1)-c(a-1)+a-1

=(a-1)(bc-b-c+1)

=(a-1)[b(c-1)-(c-1)]

=(a-1)(c-1)(b-1)

=(a-1)(b-1)(c-1)

18 tháng 11 2017

a) \(A = \frac{(2 + x)^{2} - x^{2}}{2(x + 1)} = \frac{(2 + x - x)(2 + x + x)}{2(x + 1)}= \frac{2(2x + 2)}{2(x + 1)}= \frac{4(x + 1)}{2(x + 1)}= 2\)

b) Xin phép sửa lại đề:

B = \(\frac{5ax + 5x + 3 + 3a}{10ax + 15x + 9 + 6a}\)= \(\frac{5x(a + 1) + 3(a + 1)}{5x(2a + 3) + 3(2a + 3)}= \frac{(a + 1)(5x + 3)}{(2a + 3)(5x + 3)}= \frac{a + 1}{2a + 3}\)

hơi nhỏ pn ráng đọc nhé, xin lỗi

19 tháng 11 2017

Gia Hân Ngô tại sao câu b lại phải sửa đề vậy mk k hỉu lém

3 tháng 8 2017

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.


 

19 tháng 2 2020

*) \(MinA\) :

Ta thấy: a,b,c đều là các số thực không âm.

Do đó : \(A\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.

\(*)MaxA\) :

Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\) 

\(\Rightarrow1-3a\le0\)

Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) )    \(=\frac{1}{4}\)

hay \(A\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.

\(\)