\(x+y\ge10\). tìm Min của \(P=2x+y+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)

\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)

\(\ge2.6+2+\dfrac{4}{5}.10=22\)

Vậy GTNN là P = 22 khi x = y = 5

5 tháng 1 2018

Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)

Giải

\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)

Áp dụng BĐT AM-GM, ta có:

\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)

\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)

Do đó

\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))

Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)

24 tháng 2 2020

Ta có: \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{4}{5}x+\frac{6}{5}+\frac{4}{5}y+\frac{y}{5}+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{4}{5}\left(x+y\right)+\left(\frac{6}{5}x+\frac{30}{x}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)

\(Vì:x,y>0\) nên ta áp dụng BĐT Cauchy cho hai số dương \(\frac{6}{5}x\)\(\frac{30}{x};\frac{y}{5}\)\(\frac{5}{y}\) ta được:

\(\frac{6}{5}x+\frac{30}{x}\ge2\sqrt{\frac{6}{5}x.\frac{30}{x}}=12\left(1\right)\)

\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) và giả thiết \(x+y\ge10\)

\(\Rightarrow P\ge8+12+2=22\)

\(\Rightarrow Min_P=22\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=5\)

27 tháng 3 2018

Ta có :

\(Q=\left(2x^2+\dfrac{2}{x^2}\right)+\left(3y^2+\dfrac{3}{y^2}\right)+\left(\dfrac{4}{x^2}+\dfrac{5}{y^2}\right)\ge2.2+2.3+9=19\)

Dấu "=" xảy ra khi x=y=1