K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)

\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)

Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)

19 tháng 12 2018

\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)

\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)

\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)

dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)

\(\Rightarrow\)Min  \(p=2\sqrt{6}+2013\)

Bạn xem hộ mình sai ở đâu giùm nha?

17 tháng 10 2021

TK:

Cho hai số thực dương x, y thoả mãn x + y + 2xy = \(\dfrac{15}{2}\). Tính giá trị nhỏ nhất của biểu thức P = x + y - Hoc24

 

16 tháng 4 2016

Áp dụng BĐT Cô-si:

X4+1\(\ge\) 2X2   Dấu = xảy ra <=> X=1

Y4 + 1\(\ge\)  2Y2  Dấu = xảy ra <=> Y=1

=> P\(\ge\)  2X2 . 2Y2+2013

        \(\ge\)   4X2Y2 +2013 

Vì 4X2Y2\(\ge\)    0

=> P    \(\ge\)    2013

Vậy Min P= 2013 tại X=Y=1

9 tháng 5 2021

-5

15 tháng 1 2018

bài này bn dùng côsi ngược dấu nhé

15 tháng 1 2018

Áp dụng BĐT AM-GM:

\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)

TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:

\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)

"=" <=> x=y=z=1

2 tháng 4 2018

Áp dụng BĐT Cauchy, ta có:

4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt

>= 4(x + y + z)t(x + y + z)(x + y)/xyzt

>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz

>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64

=> A >= 16

NV
7 tháng 1 2021

Vì nguyên tắc cân bằng điểm rơi của BĐT:

\(a+b+c\ge3\sqrt[3]{abc}\) với dấu "=" xảy ra khi \(a=b=c\)

Dự đoán dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Do đó, bạn cần 1 hằng số k sao cho:

\(\dfrac{2}{xy}+kx+ky\ge3\sqrt[3]{...}\)

Với \(\dfrac{2}{xy}=kx=ky\)  khi \(x=y=\dfrac{1}{2}\)

Thay vào: \(\dfrac{2}{\dfrac{1}{2}.\dfrac{1}{2}}=k.\dfrac{1}{2}=k.\dfrac{1}{2}\Rightarrow k=16\)

Đó là lý do xuất hiện số 16

P/s: bài làm này rắc rối một cách rất không cần thiết

Sau khi đến đoạn: \(P=1+\dfrac{2}{xy}\)

Ta làm tiếp như sau:

Từ giả thiết: \(1=x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow P=1+2.\dfrac{1}{xy}\ge1+2.4=9\)

Như vậy đơn giản hơn nhiều :)

NV
17 tháng 8 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)