Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
éo chắc
ĐK: x >-3/2 và y khác y\(\ge\)0
\(\dfrac{y}{2x+3}=\dfrac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
=>\(\left(\sqrt{y}\right)^3+\left(\sqrt{y}\right)^2=\left(\sqrt{2x+3}\right)^3+\left(\sqrt{2x+3}\right)^2\)
<=>\(\left(\sqrt{y}-\sqrt{2x+3}\right)\left(2x+3+y+\sqrt{y}\sqrt{2x+3}\right)+\left(\sqrt{y}-\sqrt{2x+3}\right)\left(\sqrt{y}+\sqrt{2x+3}\right)=0\)
<=>\(\left(\sqrt{y}-\sqrt{2x+3}\right)\left(2x+3+y+\sqrt{y}\sqrt{2x+3}+\sqrt{y}+\sqrt{2x+3}\right)=0\)
<=>\(\sqrt{y}=\sqrt{2x+3}\)(\(2x+3+y+\sqrt{y}\sqrt{2x+3}+\sqrt{y}+\sqrt{2x+3}\ne0\))
<=>y=2x+3
Suy ra: Q=2x2+3x-6x-9-2x-3
=2x2-5x-12
=2(x2-2.x.\(\dfrac{5}{4}\)+\(\dfrac{25}{16}\)-\(\dfrac{121}{16}\))
=2(x-\(\dfrac{5}{4}\))2-\(\dfrac{121}{8}\)\(\ge\dfrac{-121}{8}\)
Dấu "=" xảy ra khi x=5/4 =>y=11/2
Xấu ***** chắc sai
ĐKXĐ:\(x>\dfrac{-3}{2};y\ge0\)
Từ đề bài ta có thêm ĐK: y > 0 (vì nếu y=0 thì VP=0, VT > 0)
Đặt \(\sqrt{2x+3}=a,\sqrt{y}=b\) => \(a>0,b>0\)
Ta có:
\(\dfrac{b^2}{a^2}=\dfrac{a+1}{b+1}\)
<=> \(b^3+b^2=a^3+a^2\)
<=>\(\left(a^3-b^3\right)+\left(a^2-b^2\right)=0\)
<=>\(\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(a+b\right)=0\)
<=>\(\left(a-b\right)\left(a^2+ab+b^2+a+b\right)=0\)
<=>a-b=0(dễ thấy \(a^2+ab+b^2+a+b>0\) với a>0, b>0)
<=>a=b
<=>\(\sqrt{2x+3}=\sqrt{y}\)
<=>2x + 3 = y
Q = xy - 3y - 2x - 3
= x( 2x + 3 ) - 3( 2x + 3 ) - 2x - 3
= 2x2 + 3x - 6x - 9 - 2x - 3
= 2x2 - 5x - 12
= \(2\left(x-\dfrac{5}{4}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)
Vậy Q min = \(-\dfrac{121}{8}\) khi và chỉ khi x = \(\dfrac{5}{4}\), y = \(2.\dfrac{5}{4}+3=\dfrac{11}{2}\).
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}
a. R / \(\left\{-2\right\}\)
b. R / \(\left\{4;-1\right\}\)
c. R ( mẫu luôn > 0 )
d. \(\left(2;+\infty\right)\)
e. \(\left(-\infty;\dfrac{5}{6}\right)\)
f. \(\left(2;+\infty\right)\)
g. \(\left(1;3\right)\)
h. \(\left(5;+\infty\right)\)
i. \(\left(1;+\infty\right)\)
k. \(\left(-\infty;2\right)\)
l. R/\(\left\{\pm3\right\}\)
m. \(\left(-2;+\infty\right)/\left\{3\right\}\)
Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến
\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)
Nên phần còn lại vô nghiệm
Lời giải:
Ta sẽ CM BĐT trung gian sau:
\(P\geq \frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Leftrightarrow x^2\left ( \frac{1}{y+z}-\frac{1}{x+y} \right )+y^2\left ( \frac{1}{x+z}-\frac{1}{z+y} \right )+z^2\left ( \frac{1}{x+y}-\frac{1}{z+x} \right )\geq 0\)
\(\Leftrightarrow x^2(x^2-z^2)+y^2(y^2-x^2)+z^2(z^2-y^2)\geq 0\)
\(\Leftrightarrow (x^2-y^2)^2+(y^2-z^2)^2+(z^2-x^2)^2\geq 0\) (luôn đúng)
Giờ ta sẽ tìm min \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Hiển nhiên \(\sum \frac{x^2}{x+y}=\sum \frac{y^2}{x+y}\) nên
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)=A\)
Áp dụng BĐT Cauchy-Schwarz:
\(A\geq \frac{1}{2}\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x+y+z)}=\frac{9}{x+y+z}\)
Áp dụng BĐT Cauchy: \(\sqrt{x^2+y^2}\geq \frac{x+y}{\sqrt{2}}\)
Tương tự với các số còn lại suy ra \(6\geq \sqrt{2}.(x+y+z)\Rightarrow x+y+z\leq 3\sqrt{2}\)
\(\Rightarrow A\geq \frac{3\sqrt{2}}{2}\) kéo theo \(P_{\min}=\frac{3\sqrt{2}}{2}\)
Dấu bằng xảy ra khi \(x=y=z=\sqrt{2}\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
CHÚC BẠN HỌC TỐT
Thanks