Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt z1 + z2 = a; z1. z2 = b; a, b ∈ R
Khi đó, z1 và z2 là hai nghiệm của phương trình
(z – z1)(z – z2) = 0 hay z2 – (z1 + z2)z + z1. z2 = 0 ⇔ z2 – az + b = 0
Đó là phương trình bậc hai đối với hệ số thực. Suy ra điều phải chứng minh.
TRONG VONG MAY PHUT MA GIAI MẤY BÀI LIỀN BẠN LÀ 1 SIÊU NHÂN GIẢI TOÁN...HOẶC BẠN LÀ 1 SIÊU NHÂN SAO CHÉP TỪ SÁCH GIẢI BÀI TẬP LÊN ĐỂ CẦU ...."GP"
Lời giải:
\(\overline{z_1}=2-4i; \overline{z_2}=-1-3i\)
\(\Rightarrow w=z_1\overline{z_2}-2\overline{z_1}=(2+4i)(-1-3i)-2(2-4i)=6-2i\)
\(\Rightarrow |w|=\sqrt{6^2+(-2)^2}=2\sqrt{10}\)
\(\overline{z_1}=2-4i\) ; \(\overline{z_2}=-1-3i\)
\(\Rightarrow w=\left(2+4i\right)\left(-1-3i\right)-2\left(2-4i\right)=6-2i\)
\(\Rightarrow\left|w\right|=\sqrt{6^2+\left(-2\right)^2}=2\sqrt{10}\)
Trường hợp ∆ ≥ 0 ta đã biết kết quả.
Xét trường hợp ∆ < 0, từ công thức nghiệm
z1 = , z2 = với |∆| = 4ac - b2
z1 + z2 =
z1 z2 =
a) Điểm \(P_1\left(0,2\right)\) thuộc phần dương trục tung, nên :
\(r_1=2,\theta_1=\frac{\pi}{2};z_1=2\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\)
Arg\(z_1=\left\{\frac{\pi}{2}+2k\pi,k\in Z\right\}\)
b) Điểm \(P_2\left(-1,0\right)\) thuộc phần âm trục hoành, nên :
\(r_2=1,\theta_2=\pi;z_2=\cos\pi+i\sin\pi\)
Arg\(z_2=\left\{\pi+2k\pi\right\}\)
\(r_3=2,\theta_3=0;z_3=2\left(\cos0+i\sin0\right)\)
Arg\(z_3=\left\{2k\pi,k\in Z\right\}\)
d) Điểm \(P_4\left(0,-3\right)\) thuộc phần âm trục tung, nên :
\(r_4=3,\theta_4=\frac{3\pi}{2};z_4=2\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)\)
Arg\(z_4=\left\{\frac{3\pi}{2}+2k\pi,k\in Z\right\}\)
Rõ ràng
\(1=\cos0+i\sin0;i=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\)
\(-1=\cos\pi+i\sin\pi;i=\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\)
Lời giải:
Ta có: \(w=\frac{z_2}{z_1}+i=\frac{1+mi}{1-2i}+i=\frac{(1+mi)(1+2i)}{(1-2i)(1+2i)}+i\)
\(\Leftrightarrow w=\frac{1-2m+i(m+2)}{5}+i=\frac{1-2m+i(m+7)}{5}\)
Do đó, để $w$ là một số thực thì \(1-2m+i(m+7)\) phải là số thực. Điều này xảy ra khi mà \(m+7=0\Leftrightarrow m=-7\)
Vậy........