Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath
\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)
\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)
\(\Leftrightarrow xy+1=\left(x+y\right)^2\)
Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm
Nếu 1 trong 2 số \(x,y\) không chia hết cho 5 thì hiển nhiên \(x^2-xy+y^2⋮̸5\).
Do đó, ta chỉ xét trường hợp \(x,y\) hoặc cùng chia hết cho 5 hoặc đều không chia hết cho 5.
Nếu \(x,y⋮̸5\) thì \(x=5z+r\left(z,r\inℕ;1\le r\le4\right)\) và \(y=5t+r'\left(t,r'\inℕ;1\le r'\le4\right)\)
Khi đó \(x^2-xy+y^2=\left(5z+r\right)^2-\left(5z+r\right)\left(5t+r'\right)+\left(5t+r'\right)^2\)
\(=25z+10zr+r^2-25zt-5zr'-5tr-rr'+25t^2+10tr'+r'^2\)
\(=5P+r^2-rr'+r'^2\)
\(=55P+\left(r+r'\right)^2-3rr'\)
Do \(rr'⋮̸5\) nên nếu \(r+r'⋮5\) thì \(x^2-xy+y^2⋮̸5\)(loại), do đó \(r+r'⋮̸5\)
Nếu \(r\equiv r'\) thì \(P=55P+4r^2-3r^2=55P+r^2⋮̸5\)
Do đó ta xét các TH:
\(\left(r,r'\right)=\left(1,2\right)\) thì \(r^2-rr'+r'^2=3⋮̸5\), loại
\(\left(r,r'\right)=\left(1,3\right)\) thì \(r^2-rr'+r'^2=7⋮̸5\), loại
\(\left(r,r'\right)=\left(2,4\right)\) thì \(r^2-rr'+r'^2=12⋮̸5\), loại
\(\left(r,r'\right)=\left(3,4\right)\) thì \(r^2-rr'+r'^2=13⋮̸5\), loại
Vậy \(x,y⋮5\). Làm tương tự đối với 11 (nhưng hơi dài chút)
Khi đó ta chứng minh được \(x,y⋮55\)
\(\Rightarrow x^2-xy+y^2⋮55^2=3025\) (đpcm)
Mình sẽ suy nghĩ cách ngắn hơn nhé.