K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2022

Bài này là bài khảo sát chất lượng HSG mong mn giúp bọn mình với ạ

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2(a+b)=2(a^2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

1 tháng 6 2021

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b

11 tháng 3 2021

Nè Phan Linh Nhi, mk ko hỉu cái chỗ: a+b\(\le2\). Bn có thể giải thích chi tiết cho mk đc ko??

6 tháng 4 2018

Đề đúng bn ak !

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

11 tháng 3 2021

\(S\ge0\), đẳng thức xảy ra  khi a = b = 0.

Bài này chắc có vấn đề, đáng lẽ phải là tìm GTLN

 

11 tháng 3 2021

Sigma CTV, mk đánh nhầm đó

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

$a^2+b^2=a+b$

$\Rightarrow (a+b)^2-(a+b)=2ab\geq 0$

$\Rightarrow a+b\geq 1$. Do đó:

$S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{2ab+a+b}{ab+a+b+1}\geq \frac{\frac{ab}{2}+\frac{a+b+1}{2}}{ab+a+b+1}=\frac{1}{2}$
Vậy GTNN của $S$ là $\frac{1}{2}$. Dấu "=" xảy ra khi $(a,b)=(0,1)$ và hoán vị.