\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

\(x+y=6\sqrt{xy}\)

\(\Leftrightarrow\left(x+y\right)^2=36xy\)

\(\Leftrightarrow x^2-34xy+y^2=0\)

\(\Leftrightarrow\left(\frac{x}{y}\right)^2-34\left(\frac{x}{y}\right)+1=0\)

Đặt \(\frac{x}{y}=t>0\Rightarrow t^2-34t+1=0\)

\(\Rightarrow t=17\pm12\sqrt{2}\) hay \(\frac{x}{y}=17\pm12\sqrt{2}\)

20 tháng 1 2017

Ta có: \(x+y=6\sqrt{xy}\)

Vì y là số dương nên \(y\ne0\), ta chia hai vế cho y.

\(\Rightarrow\frac{x}{y}+1=6\sqrt{\frac{x}{y}}\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\Rightarrow a^2+1=6a\)

\(\Rightarrow\left[\begin{matrix}a=3-2\sqrt{2}\\a=3+2\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}\frac{x}{y}=17-12\sqrt{2}\\\frac{x}{y}=17+12\sqrt{2}\end{matrix}\right.\)

31 tháng 1 2017

Đề thì vừa đúng vừa sai. Đề đúng vì max cần tìm là có thật. Nhưng đề sai vì kết quả quá xấu (thậm chí đến WolframAlpha còn giải ko trọn vẹn mà chỉ ra xấp xỉ).

Ý tưởng thế này: Đặt \(X=\sqrt{x}\) thì \(\sqrt{y}=\frac{1}{X}\) nên viết lại biểu thức thành:

\(Q=\frac{1}{X+2}+\frac{1}{X+\frac{1}{X}+1}+\frac{1}{\frac{1}{X}+1}=\frac{X^4+5X^3+8X^2+6X+1}{\left(X+1\right)\left(X+2\right)\left(X^2+X+1\right)}\)

Tới đây có giải cũng ko được đâu, vì...

Theo WolframAlpha thì quả thật biểu thức có max nhưng giá trị đó là:

\(Q\approx1,20411\) tại \(X\approx1,75108\).

Khi mình tra sâu hơn về cái giá trị \(X\) trên kia thì nhận ra giá trị đó là nghiệm của pt

\(x^6+4x^5+5x^4-6x^3-22x^2-20x-7=0\) (giải kiểu gì???)

5 tháng 2 2017

Mình nghĩ đề bài đã cho điều kiện x,y là hai số dương có tích bằng 1 thì nên áp dụng bất đẳng thức AM-GM sẽ phù hợp với chương trình lớp 9

cơ mà bạn tra sâu hơn về giá trị x như thế nào để biết x là nghiệm của phương trình trên :v tò mò quá

13 tháng 10 2017

Ta có: \(1=x+y\ge2\sqrt{xy}\)

\(\Rightarrow4xy\le1\)

\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 10 2017

Áp dụng BĐT AM - MG ta có :

\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel :

\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)

\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)

\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)

Xảy ra khi  \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)

NV
28 tháng 6 2020

\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)}{x^2y^2}=\frac{xy\left(x+1\right)\left(y+1\right)}{x^2y^2}\)

\(=\frac{xy+x+y+1}{xy}=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=...\)

6 tháng 1 2017

Áp dụng BĐT AM-GM, ta được \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}=3\)

Đẳng thức xảy ra khi x = y = z = 2

Vậy minP = 3 tại (x,y,z) = (2,2,2)

6 tháng 1 2017

mk chưa hk cái bdt này

3 tháng 1 2018

\(A=x+y+\frac{6}{x}+2011\)

\(\Leftrightarrow3A=\left(x+3y\right)+\left(2x+\frac{18}{x}\right)+6033\)(1)

ta có \(x+3y\ge6\left(gt\right)\)(2)

        \(2x+\frac{18}{x}\ge2\sqrt{2x\cdot\frac{18}{x}}=2\cdot6=12\)( theo bất đẳng thức cô si cho các số dương)      (3)

từ (1), (2) và (3)

\(\Rightarrow3A\ge6+12+6033=6051\)

\(\Rightarrow A\ge2017\)

vậy min A=2017

\(\Leftrightarrow\hept{\begin{cases}x+3y=6\\2x=\frac{18}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6-3y\\2x^2=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6-3y\\x^2=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6-3y\\x=3\end{cases}\Leftrightarrow\hept{\begin{cases}6-3y=3\\x=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=3\end{cases}}}}\)(vì x>0)

vậy ......