\(\dfrac{a+b}{a}=\dfrac{a}{b}\) , chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Ta có:

\(\dfrac{a+b}{a}=\dfrac{a}{b}\)

Điều kiện \(\left\{{}\begin{matrix}a\ne0\\b\ne0\end{matrix}\right.\)

\(\Leftrightarrow1+\dfrac{b}{a}=\dfrac{a}{b}\)

\(\Leftrightarrow1+\dfrac{1}{x}-x=0\)

\(\Leftrightarrow x^2-x-1=0\)

Vậy \(x=\dfrac{a}{b}\) là 1 nghiệm của pt \(x^2-x-1\)

3 tháng 5 2017

Ta có: \(\frac{a+b}{a}=\frac{a}{b}\)

\(\Leftrightarrow\frac{a}{b}-1-\frac{1}{\frac{a}{b}}=0\)

\(\Leftrightarrow\left(\frac{a}{b}\right)^2-\frac{a}{b}-1=0\)

\(\Leftrightarrow\left(\frac{a}{b}-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{\sqrt{5}+1}{2}\\\frac{a}{b}=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Thế \(\frac{a}{b}\) vào PT \(x^2-x-1\) ta thấy ĐPCM

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

25 tháng 4 2017

cần giúp ko

25 tháng 4 2017

4 tháng 4 2017

bài toán ko hợp lệ

sửa lại đề

5 tháng 5 2017

Bài này thì quy đồng lên sau đó VT-VP là được