\(a-b=a^3+b^3.CMR:a^2+b^2< 1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.

25 tháng 3 2017

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

25 tháng 8 2017

Với mọi a , b , c \(\in\)R ta luôn có :

\(a^2\)+   \(b^2\)+   \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)

Ta cần chứng minh ( 1 ) là bất đẳng thức đúng

\(\Leftrightarrow\)\(a^2\)+   \(b^2\)+   \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0

\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )

Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng

Nên bất đẳng thức ( 1 ) được chứng minh

Xảy ra khi và chỉ khi a + b = c

Mà   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)( gt )

Mà   \(\frac{5}{3}\)=   \(1\frac{2}{3}\)< 2  ( 3 )

Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :

2bc + 2ca - 2ab < hoặc =    \(a^2\)+   \(b^2\)+   \(c^2\)< 2

\(\Rightarrow\)2bc + 2ca - 2ab < 2

Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc

\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy với a ; b ; c là các số dương thỏa mãn điều kiện :   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)thì ta luôn chứng minh được :

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

25 tháng 8 2017

đm làm mỏi tay :v thấy đúng thì ..................
 

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)