Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào đây đi:
https://hoc24.vn/hoi-dap/question/32718.html
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)
cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)
Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)
chứng minh tương tự suy ra đpcm
Lời giải:
a) Vì \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a-b< 0\). Kết hợp với $a,b,c>0$
Do đó:
\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{ac-bc}{b(b+c)}=\frac{c(a-b)}{b(b+c)}<0\)
\(\Rightarrow \frac{a}{b}< \frac{a+c}{b+c}\)
b) \(\frac{a}{b}> 1\Rightarrow a> b\Rightarrow a-b> 0\). Kết hợp với $a,b,c$ dương
Do đó:
\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{c(a-b)}{b(b+c)}>0\)
\(\Rightarrow \frac{a}{b}> \frac{a+c}{b+c}\)
a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\) ( đpcm. )
b) Vì \(b>0;d>0\) \(\Rightarrow b+d>0\)
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Leftrightarrow ad< bc\) (*)
Thêm \(ab\) vào \(2\) vế (*), ta có:
\(ab+ad< ba+bc\)
\(a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Thêm \(cd\) vào \(2\) vế (*), ta được:
\(ad+cd< cb+cd\)
\(\left(a+c\right).d< c.\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( đpcm )
a)ta có \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)\(\Rightarrow\)\(\dfrac{a\times d}{b\times d}\)=\(\dfrac{c\times b}{d\times b}\)\(\Rightarrow\)a\(\times\)d=c\(\times\)d\(\Rightarrow\)ad=bc
b)theo câu a ta có \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad=bc\)(1)
Thêm ab vào 2 vế của (1):ad+ab=bc+ab
a(b+d)<b(a+c)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)(2)
Thêm cd vào 2 vế của (1):ad+cd<bc+cd
d(a+c)<c(b+d)\(\Rightarrow\)\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(3)
Từ(2)và(3)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Sửa đề: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Áp dụng BĐT Cosi,ta được:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)