K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

16 tháng 6 2016

a) Ta có:

(a + b)2 >= 0 => a2 + b2 >= -2ab

(a - 1)2 >= 0 => a2 + 1 >= 2a

(b - 1)2 >= 0 => b2 + 1 >= 2b

Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b

Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:

a2 + b2 + 1 > -ab + a + b      .đpcm.

b) a + b + c = 0 => a + b = -c => (a + b)3 = -c => a3 + 3a2b +3 ab2 + b3 = -c3

=> a3 + b3 + c3 = -3ab(a + b)   (*)

Mà a + b + c = 0 => a + b = -c 

=> (*) <=>  a3 + b3 + c3 = 3abc     .đpcm.

13 tháng 4 2017

ta có: \(a^3+b^3-a^2b-ab^2>0\)*

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)>0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)>0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>0\) (đúng)

\(\Rightarrow\) BĐT * luôn đúng

13 tháng 4 2017

Ta có: \(a^3+b^3>a^2b+ab^2\) (*)

<=> \(a^3-a^2b+b^3-ab^2>0\)

<=> \(a^2\left(a-b\right)+b^2\left(b-a\right)>0\)

<=> \(\left(a-b\right)\left(a^2-b^2\right)>0\)

<=> \(\left(a-b\right)^2\left(a+b\right)>0\) (1)

(1) đúng => (*) đúng

30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

18 tháng 6 2020

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)^2=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)\left(\frac{a}{b}+\frac{b}{a}\right)\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right).\frac{1}{2}\left(\frac{a^2+b^2}{ab}\right)\ge\left(\frac{a}{b}+\frac{b}{a}\right).\frac{1}{2}\left(\frac{2ab}{ab}\right)=\frac{a}{b}+\frac{b}{a}\)

Vậy có điều cần cm 

Dấu = xảy ra <=> a = b

28 tháng 3 2016

nhân 4 vào 2 vế,,,cm tuong đương

4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)

áp dụng 2(a^2+b^2)>=(a+b)^2

=> đpcm