\(\frac{1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\)

Áp dụng BĐT Cô Si cho 2 số dương ta có:

\(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\)

25 tháng 12 2018

(a+b)(a2+ab+b2)+ab

=1(a2+2ab+b2-ab)+ab

=((a+b)2-ab)+ab

=1-ab+ab

=1

25 tháng 12 2018

\(a^3+b^3+ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab\)

\(=a^2+b^2\)

\(=a^2+b^2+2ab-2ab\)

\(=\left(a+b\right)^2-2ab\)

\(=1-2ab\)

Ta có: \(a+b=1\)

\(\Rightarrow\left(a+b\right)^2=1^2\)

\(a^2+2ab+b^2=1\)

Áp dụng BĐT AM-GM ta có:

\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)

\(\Leftrightarrow1\ge4ab\)

\(\Leftrightarrow\frac{1}{4}\ge ab\)

\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)

                                                                                    đpcm

P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ

\(a^2+b^2\ge2ab\)rồi áp dụng nhé~

19 tháng 3 2019

Ta có :

\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)

\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)

\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)

19 tháng 3 2019

Thanhs.

2 tháng 12 2017

(a+b+c)2=a2+b2+c2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=> bc=-ab-ac

=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)

Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)

                     \(\frac{c^2}{c^2+2ab}=...\)

=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...

                                         =\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                                        =1

5 tháng 10 2016

Đề đúng là \(T=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

Ta có:

\(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\) (chứng minh cái này chắc dễ)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)

Tương tự ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right)\)và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)

Cộng theo vế của (1);(2) và (3) ta có:

\(T\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\)(đpcm)

Dấu = khi \(a=b=c=1\)

9 tháng 11 2016

Đặt \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\) (*)

Ta có: \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)

\(=\frac{1+a+ab}{1+a+ab}=1=VP\) (Đpcm)

 

Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

13 tháng 12 2017

⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2

⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0

⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0

⇔[(a+b)2−ab−1]2≥0(đúng) 

           k mình đi

10 tháng 8 2017

xin lỗi mik viết nhầm chỉ có 1 số 8 thôi