\(\left\{{}\begin{matrix}ax^2+bx+c=0\left(1\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

tim max duoc thoi nhe ban

8 tháng 5 2018

Cứ tìm đi

Okɑy

29 tháng 1 2019

Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)

Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)

                       \(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)

\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)

\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)

 \(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Với $a=0$ thì pt trở thành: \(bx+c=0\)

\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

PT luôn có nghiệm \(x=\frac{-c}{b}\)

Với $a\neq 0$

Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

Nếu \(ac>0, c>0\Rightarrow a>0\)

Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

\(\Leftrightarrow (c+a)^2< b(a+c)\)

\(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

Do đó pt \(ax^2+bx+c=0\) có nghiệm

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2) Bài 2: Cho 2 phương trình: \(x+y=2\) và \(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình Bài 3: Tìm các nghiệm nguyên của 2 phương trình: a) \(4x-3y=11\) b) \(5x+3y=2\) Bài 4: Giải và biện luận hệ phương trình: a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b)...
Đọc tiếp

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2)

Bài 2: Cho 2 phương trình: \(x+y=2\)\(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình

Bài 3: Tìm các nghiệm nguyên của 2 phương trình:

a) \(4x-3y=11\)

b) \(5x+3y=2\)

Bài 4: Giải và biện luận hệ phương trình:

a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}mx+y=m\\x+my=1\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}ax+y=b\\x-y=2\end{matrix}\right.\)

Bài 5: a) Tìm m để hệ pt sau vô nghiệm : \(\left\{{}\begin{matrix}x+2y=3\\mx-4y=-5\end{matrix}\right.\)

b) Tìm m để hệ pt sau có nghiệm duy nhất : \(\left\{{}\begin{matrix}\left(m-2\right)x+y=3\\x+y=1\end{matrix}\right.\)

Bài 6: Tìm m để ba đường thẳng sau đồng quy:

\(\left(d_1\right)\): \(2x+3y=7\) \(\left(d_2\right)\): \(x-y=6\) \(\left(d_3\right)\): \(3x+my=13\)

Bài 7: Tìm các gtri của m để hệ pt : \(\left\{{}\begin{matrix}3x-y=2-m\\x+2y=m+1\end{matrix}\right.\)có nghiệm \(\left(x_0;y_0\right)\) và sao cho \(x_0^2+y_0^2\) đạt GTNN

Bài 8: Giải hệ pt : \(\left\{{}\begin{matrix}m\left|x\right|-y=m\\\left|x\right|+my=1\end{matrix}\right.\)

Bài 9: a) Tìm m để hệ pt \(\left\{{}\begin{matrix}2x-my=-3\\mx+3y=4\end{matrix}\right.\)có nghiệm (x;y) và x<0; y>0

b) Tìm m để hệ pt \(\left\{{}\begin{matrix}3x-6y=1\\5x-my=2\end{matrix}\right.\) có nghiệm (x;y) và x<0; y<0

Bài 10: Hai xe cùng khởi hành một lúc ở 2 tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ, nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Bài 11: Hai loại quặng chứa 75% và 50% sắt. Tính khối lượng của mỗi loại quặng đem trộn để được 25 tấn quặng có chứa 66% sắt.

Mọi người giúp em giải chi tiết các bài này gấp với ạ!!!!!!!

0
3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r